
J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

Published by Institute of Physics Publishing for SISSA

Received: April 16, 2007

Accepted: May 11, 2007

Published: May 29, 2007

A practical seedless infrared-safe cone jet algorithm

Gavin P. Salam and Grégory Soyez∗

LPTHE, Université Pierre et Marie Curie - Paris 6, and

Université Denis Diderot - Paris 7,

CNRS UMR 7589, 75252 Paris cedex 05, France

E-mail: salam@lpthe.jussieu.fr, g.soyez@ulg.ac.be

Abstract: Current cone jet algorithms, widely used at hadron colliders, take event parti-

cles as seeds in an iterative search for stable cones. A longstanding infrared (IR) unsafety

issue in such algorithms is often assumed to be solvable by adding extra ‘midpoint’ seeds,

but actually is just postponed to one order higher in the coupling. A proper solution is

to switch to an exact seedless cone algorithm, one that provably identifies all stable cones.

The only existing approach takes N2N time to find jets among N particles, making it

unusable at hadron level. This can be reduced to N2 ln N time, leading to code (SISCone)

whose speed is similar to that of public midpoint implementations. Monte Carlo tests

provide a strong cross-check of an analytical proof of the IR safety of the new algorithm,

and the absence of any ‘Rsep’ issue implies a good practical correspondence between parton

and hadron levels. Relative to a midpoint cone, the use of an IR safe seedless algorithm

leads to modest changes for inclusive jet spectra, mostly through reduced sensitivity to the

underlying event, and significant changes for some multi-jet observables.†

Keywords: Jets, QCD.

∗On leave from the PTF group of the University of Liège.

Current address: Physics Department, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
†SISCone, the C++ implementation of the algorithm, is available at:

http://projects.hepforge.org/siscone/ (stand-alone), http://www.lpthe.jussieu.fr/˜salam/fastjet/ (FastJet

plugin).

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep052007086/jhep052007086.pdf

mailto:salam@lpthe.jussieu.fr
mailto:g.soyez@ulg.ac.be
http://jhep.sissa.it/stdsearch

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

Contents

1. Introduction 1

2. Overview of the cone jet-finding algorithm 4

3. IR unsafety in the midpoint algorithm 5

4. An exact seedless cone jet definition 7

4.1 One-dimensional example 8

4.2 The two-dimensional case 8

4.2.1 General approach 8

4.2.2 Specific computational strategies 10

4.3 The split-merge part of the cone algorithm 13

5. Tests and comparisons 15

5.1 Measures of IR (un)safety 15

5.2 Speed 17

5.3 Rsep: an inexistent problem 19

5.4 Physics impact of seedless v. midpoint cone 22

5.4.1 Inclusive jet spectrum 22

5.4.2 Jet masses in 3-jet events 24

6. Conclusions 27

A. Further computational details 29

A.1 Cone multiplicities 29

A.2 Computational complexity of the split-merge step 30

B. Proof of IR safety of the SISCone algorithm 30

B.1 General aspects of the proof 31

B.2 Split-merge ordering variable 34

1. Introduction

Two broad classes of jet definition are generally advocated [1] for hadron colliders. One

option is to use sequential recombination jet algorithms, such as the kt [2] and Cam-

bridge/Aachen algorithms [3], which introduce a distance measure between particles, and

repeatedly recombine the closest pair of particles until some stopping criterion is reached.

While experimentally these are starting to be investigated [4, 5], the bulk of measurements

– 1 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

are currently carried out with the other class of jet definition, cone jet algorithms (see e.g.

[6]). In general there are indications [7] that it may be advantageous to use both sequential

recombination and cone jet algorithms because of complementary sensitivities to different

classes of non-perturbative corrections.

Cone jet algorithms are inspired by the idea [8] of defining a jet as an angular cone

around some direction of dominant energy flow. To find these directions of dominant energy

flow, cone algorithms usually take some (or all) of the event particles as ‘seeds’, i.e. trial

cone directions. Then for each seed they establish the list of particles in the trial cone,

evaluate the sum of their 4-momenta, and use the resulting 4-momentum as a new trial

direction for the cone. This procedure is iterated until the cone direction no longer changes,

i.e. until one has a “stable cone”.

Stable cones have the property that the cone axis a (a four-vector) coincides with the

(four-vector) axis defined by the total momentum of the particles contained in the cone,

D (pin cone, a) = 0 , with pin cone =
∑

i

pi Θ(R − D(pi, a)) , (1.1)

where D(p, a) is some measure of angular distance between the four-momentum p and the

cone axis a, and R is the given opening (half)-angle of the cone, also referred to as the cone

radius. Typically one defines D2(p, a) = (yp − ya)
2 + (φp − φa)

2, where yp, ya and φp, φa

are respectively the rapidity and azimuth of p and a.

Two types of problem arise when using seeds as starting points of an iterative search

for stable cones. On one hand, if one only uses particles above some momentum threshold

as seeds, then the procedure is collinear unsafe. Alternatively if any particle can act as a

seed then one needs to be sure that the addition of an infinitely soft particle cannot lead

to a new (hard) stable cone being found, otherwise the procedure is infrared (IR) unsafe.

The second of these problems came to fore in the 1990’s [9], when it was realised that

there can be stable cones that have two hard particles on opposing edges of the cone and

no particles in the middle, e.g. for configurations such as

pt1 > pt2; R < D(p1, p2) < (1 + pt2/pt1)R. (1.2)

In traditional iterative cone algorithms, p1 and p2 each act as seeds and two stable cones

are found, one centred on p1, the other centred on p2. The third stable cone, centred

between p1 and p2 (and containing them both) is not found. If, however, a soft particle

is added between the two hard particles, it too acts as a seed and the third stable cone is

then found. The set of stable cones (and final jets) is thus different with and without the

soft particle and there is a resulting non-cancellation of divergent real soft production and

corresponding virtual contributions, i.e. the algorithm is infrared unsafe.

Infrared unsafety is a serious issue, not just because it makes it impossible to carry

out meaningful (finite) perturbative calculations, but also because it breaks the whole

relation between the (Born or low-order) partonic structure of the event and the jets that

one observes, and it is precisely this relation that a jet algorithm is supposed to codify: it

makes no sense for the structure of multi-hundred GeV jets to change radically just because

hadronisation, the underlying event or pileup threw a 1GeV particle in between them.

– 2 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

A workaround for the above IR unsafety problem was proposed in [9]: after finding

the stable cones that come from the true seed particles, add artificial “midpoint” seeds

between pairs of stable cones and search for new stable cones that arise from the midpoint

seeds. For configurations with two hard particles, the midpoint fix resolved the IR unsafety

issue. It was thus adopted as a recommendation [6] for Run II of the Tevatron and is now

coming into use experimentally [10, 11].

Recently, it was observed [1] that in certain triangular three-point configurations there

are stable cones that are not identified even by the midpoint procedure. While these

can be identified by extended midpoint procedures (e.g. midpoints between triplets of

particles) [12, 13], in this article (section 3) we show that there exist yet other 3-particle

configurations for which even this fix does not find all stable cones.

Given this history of infrared safety problems being fixed and new ones being found,

it seems to us that iterative1 cone algorithms should be abandoned. Instead we believe

that cone jet algorithms should solve the mathematical problem of demonstrably finding

all stable cones, i.e. all solutions to eq. (1.1). This kind of jet algorithm is referred to as

an exact seedless cone jet algorithm [6] and has been advocated before in [16]. With an

exact seedless algorithm, the addition of one or more soft particles cannot lead to new

hard stable cones being found, because all hard stable cones have already been (provably)

found. Therefore the algorithm is infrared safe at all orders.

Two proposals exist for approximate implementations of the seedless jet algorithm [6,

17]. They both rely on the event being represented in terms of calorimeter towers, which

is far from ideal when considering parton or hadron-level events. Ref. [6] also proposed

a procedure for an exact seedless jet algorithm, intended for fixed-order calculations, and

implemented for example in the MCFM and NLOJet fixed order (NLO) codes [18, 19].2

This method takes a time O
(

N2N
)

to find jets among N particles. While perfectly ad-

equate for fixed order calculations (N ≤ 4), a recommendation to extend the use of such

seedless cone implementations more generally would have little chance of being adopted

experimentally: the time to find jets in a single (quiet!) event containing 100 particles

would approach 1017 years.

Given the crucial importance of infrared safety in allowing one to compare theoretical

predictions and experimental measurements, and the need for the same algorithm to be

used in both, there is a strong motivation for finding a more efficient way of implementing

the seedless cone algorithm. Section 4 will show how this can be done, first in the context

of a simple one-dimensional example (section 4.1), then generalising it to two dimensions

(y, φ, section 4.2) with an approach that can be made to run in polynomial (N2 ln N)

1A more appropriate name might be the doubly iterative cone algorithm, since as well as iterating the

cones, the cone algorithm’s definition has itself seen several iterations since its original introduction by UA1

in 1983 [14], and even since the Snowmass accord [15], the first attempt to formulate a standard, infrared

and collinear-safe cone-jet definition, over 15 years ago.
2Section 3.4.2 of [6] is the source of some confusion regarding nomenclature, because after discussing

both the midpoint and seedless algorithms, it proceeds to show some fixed-order results calculated with the

seedless algorithm, but labelled as midpoint. Though both algorithms are IR safe up to the order that was

shown, they would not have given identical results.

– 3 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

time. As in recent work on speeding up the kt jet-algorithm [20], the key insights will be

obtained by considering the geometrical aspects of the problem. Section 4.3 will discuss

aspects of the split-merge procedure.

In section 5 we will study a range of physics and practical properties of the seedless

algorithm. Given that the split-merge stage is complex and so yet another potential source

of infrared unsafety, we will use Monte Carlo techniques to provide independent evidence

for the safety of the algorithm, supplementing a proof given in appendix B. We will

examine the speed of our coding of the algorithm and see that it is as fast as publicly

available midpoint codes. We will also study the question of the relation between the low-

order perturbative characteristics of the algorithm, and its all-order behaviour, notably

as concerns the ‘Rsep’ issue [21, 1]. Finally we highlight physics contexts where we see

similarities and differences between our seedless algorithm and the midpoint algorithm.

For inclusive quantities, such as the inclusive jet spectrum, perturbative differences are of

the order of a few percent, increasing to 10% at hadron level owing to reduced sensitivity to

the underlying event in the seedless algorithm. For exclusive quantities we see differences

of the order of 10 − 50%, for example for mass spectra in multi-jet events.

2. Overview of the cone jet-finding algorithm

Algorithm 1 A full specification of a modern cone algorithm, governed by four param-

eters: the cone radius R, the overlap parameter f , the number of passes Npass and a

minimum transverse momentum in the split-merge step, pt,min. Throughout, particles are

to be combined by summing their 4-momenta and distances are to be calculated using the

longitudinally invariant ∆y and ∆φ distance measures (where y is the rapidity).

1: Put the set of current particles equal to the set of all particles in the event.

2: repeat

3: Find all stable cones of radius R (see eq. (1.1)) for the current set of particles, e.g.

using algorithm 2, section 4.2.2.

4: For each stable cone, create a protojet from the current particles contained in the

cone, and add it to the list of protojets.

5: Remove all particles that are in stable cones from the list of current particles.

6: until No new stable cones are found, or one has gone around the loop Npass times.

7: Run a Tevatron Run-II type split-merge procedure [6], algorithm 3 (section 4.3), on

the full list of protojets, with overlap parameter f and transverse momentum threshold

pt,min.

Before entering into technical considerations, we outline the structure of a modern

cone jet definition as algorithm 1, largely based on the Tevatron Run-II specification [6]. It

is governed by four parameters. The cone radius R and overlap parameter f are standard

and appeared in previous cone algorithms. The Npass variable is new and embodies the

suggestion in [1] that one should rerun the stable cone search to eliminate dark towers [21],

i.e. particles that do not appear in any stable cones (and therefore never appear in jets)

– 4 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

particle pt [GeV] y φ

1 400 0 0

2 110 0.9R 0

3 90 2.3R 0

4 1.1 1.5R 0

Table 1: Particles 1-3 represent a hard configuration. The jets from this hard configuration are

modified in the midpoint cone algorithm when one adds the soft particle 4.

during a first pass of the algorithm, even though they can correspond to significant energy

deposits. A sensible default is Npass = ∞ since, as formulated, the procedure will in any

case stop once further passes find no further stable cones. The pt,min threshold for the

split-merge step is also an addition relative to the Run II procedure, inspired by [12, 7]. It

is discussed in section 4.3 together with the rest of the split-merge procedure and may be

set to zero to recover the original Run II type behaviour, a sensible default.

The main development of this paper is the specification of how to efficiently carry

out step 3 of algorithm 1. In section 3 we will show that the midpoint approximation for

finding stable cones fails to find them all, leading to infrared unsafety problems. Section 4

will provide a practical solution. Code corresponding to this algorithm is available publicly

under the name of ‘Seedless Infrared Safe Cone’ (SISCone).

3. IR unsafety in the midpoint algorithm

Until now, the exact exhaustive identification of all stable cones was considered to be too

computationally complex to be feasible for realistic particle multiplicities. Instead, the

Tevatron experiments streamline the search for stable cones with the so-called ’midpoint

algorithm’ [9]. Given a seed, the latter calculates the total momentum of the particles

contained within a cone centred on the seed, uses the direction of this momentum as a new

seed and iterates until the resulting cone is stable. The initial set of seeds is that of all

particles whose transverse momentum is above a seed threshold s (one may take s = 0 to

obtain a collinear-safe algorithm). Then, one adds a new set of seeds given by all midpoints

between pairs of stable cones separated by less than 2R and repeats the iterations from

these midpoint seeds.

The problem with the midpoint cone algorithm can be seen from the configurations of

table 1, represented also in figure 1.

Using particles 1 − 3, there exist three stable cones. In a pt-scheme recombination

procedure (a pt weighted averaging of y and φ) they are at y ≃ {0.194R, 1.53R, 2.3R}.3
Note however that starting from particles 1, 2, 3 as seeds, one only iterates to the stable

cones at y ≃ 0.194R and y = 2.3R. Using the midpoint between these two stable cones, at

y ≃ 1.247R, one iterates back to the stable cone at y ≃ 0.194R, therefore the stable cone

3In a more standard E-scheme (four-momentum) recombination procedure the exact numbers depend

slightly on R, but the conclusions are unchanged.

– 5 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

pt/GeV pt/GeV

(a) (b)

0
y0 1 2 3−1

400

300

200

100

0
y0 1 2 3−1

400

300

200

100

Figure 1: Configuration illustrating one of the IR unsafety problems of the midpoint jet algorithm

(R = 1); (a) the stable cones (ellipses) found in the midpoint algorithm; (b) with the addition of

an arbitrarily soft seed particle (red wavy line) an extra stable cone is found.

at y = 1.53R is never found. The result is that particles 1 and 2 are in one jet, and particle

3 in another, figure 1a.

If additionally a soft particle (4) is present to act as a seed near y = 1.53R, figure 1b,

then the stable cone there is found from the iterative procedure. In this case we have three

overlapping stable cones, with hard-particle content 1 + 2, 2 + 3 and 3. What happens

next depends on the precise splitting and merging procedure that is adopted. Using that

of [6] then for f < 0.55 the jets are merged into a single large jet 1 + 2 + 3, otherwise they

are split into 1 and 2 + 3. Either way the jets are different from those obtained without

the extra soft seed particle, meaning that the procedure is infrared unsafe. In contrast, a

seedless approach would have found the three stable cones independently of the presence

of the soft particle and so would have given identical sets of jets.

The infrared divergence arises for configurations with 3 hard particles in a common

neighbourhood plus one soft one (and a further hard electroweak boson or QCD parton to

balance momentum). Quantities where it will be seen include the NLO contribution to the

heavy-jet mass in W/Z+2-jet (or 3-jet) events, the NNLO contribution to the W/Z+2-jet

cross section or the 3-jet cross section, or alternatively at NNNLO in the inclusive jet cross

section. The problem might therefore initially seem remote, since the theoretical state of

the art is far from calculations of any of these quantities. However one should recall that

infrared safety at all orders is a prerequisite if the perturbation series is to make sense

at all. If one takes the specific example of the Z+2-jet cross section (measured in [10])

then the NNLO divergent piece would be regulated physically by confinement at the non-

perturbative scale ΛQCD, and would give a contribution of order αEWα4
s ln pt/ΛQCD. Since

αs(pt) ln pt/ΛQCD ∼ 1, this divergent NNLO contribution will be of the same order as the

NLO piece αEWα3
s. Therefore the NLO calculation has little formal meaning for the mid-

point algorithm, since contributions involving yet higher powers of αs will be parametrically

as large as the NLO term.4 The situation for a range of processes is summarised in table 2.

4As concerns the measurement [10], the discussion is complicated by the confusion surrounding the

– 6 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

Observable 1st miss cones at Last meaningful order

Inclusive jet cross section NNLO NLO

W/Z/H + 1 jet cross section NNLO NLO

3 jet cross section NLO LO

W/Z/H + 2 jet cross section NLO LO

jet masses in 3 jets, W/Z/H + 2 jets LO none

Table 2: Summary of the order (α4
s

or α3
s
αEW) at which stable cones are missed in various processes

with a midpoint algorithm, and the corresponding last order that can be meaningfully calculated.

Infrared unsafety first becomes visible one order beyond that at which one misses stable cones.

4. An exact seedless cone jet definition

One way in which one could imagine trying to ‘patch’ the seed-based iterative cone jet-

algorithm to address the above problem would be to use midpoints between all pairs of

particles as seeds, as well as midpoints between the initial set of stable cones.5 However

it seems unlikely that this would resolve the fundamental problem of being sure that one

will systematically find all solutions of eq. (1.1) for any ensemble of particles.

Instead it is more appropriate to examine exhaustive, non-iterative approaches to the

problem, i.e. an exact seedless cone jet algorithm, one that provably finds all stable cones,

as advocated already some time ago in [16].

For very low multiplicities N , one approach is that suggested in section 3.3.3 of [6] and

used in the MCFM [18] and NLOJet [19] next-to-leading order codes. One first identifies

all possible subsets of the N particles in the event. For each subset S, one then determines

the rapidity (yS) and azimuth (φS) of the total momentum of the subset, pS =
∑

i∈S pi

and then checks whether a cone centred on yS , φS contains all particles in S but no other

particles. If this is the case then S corresponds to a stable cone. This procedure guarantees

that all solutions to eq. (1.1) will be found.

In the above procedure there are ∼ 2N distinct subsets of particles and establishing

whether a given subset corresponds to a stable cone takes time O (N). Therefore the

time to identify all stable cones is O
(

N2N
)

. For the values of N (≤ 4) relevant in fixed-

order calculations, N2N time is manageable, however as soon as one wishes to consider

parton-shower or hadron-level events, with dozens or hundreds of particles, N2N time is

prohibitive. A solution can only be considered realistic if it is polynomial in N , preferably

with not too high a power of N .

As mentioned in the introduction, approximate procedures for implementing seedless

cone jet algorithms have been proposed in the past [6, 17]. These rely on considering the

momentum flow into discrete calorimeter towers rather than considering particles. As such

nomenclature of the seedless and midpoint algorithms — while it seems that the measurement was carried

out with a true midpoint algorithm, the calculation probably used the ‘midpoint’ as defined in section

3.4.2 of [6] (cf. footnote 2), which is actually the seedless algorithm, i.e. the measurements and theoretical

predictions are based on different algorithms.
5This option was actually mentioned in [6] but rejected at the time as impractical.

– 7 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

etc...

Figure 2: Representation of points on a line and the places where a sliding segment has a change

in its set of enclosed points.

they are not entirely suitable for examining the full range event levels, which go from fixed-

order (few partons), via parton shower level (many partons) and hadron-level, to detector

level which has both tracking and calorimetry information.

4.1 One-dimensional example

To understand how one might construct an efficient exact seedless cone jet algorithm, it is

helpful to first examine a one-dimensional analogue of the problem. The aim is to identify

all solutions to eq. (1.1), but just for (weighted) points on a line. The equivalent of a cone

of radius R is a segment of length 2R.

Rather than immediately looking for stable segments one instead looks for all distinct

ways in which the segment can enclose a subset of the points on the line. Then for each

separate enclosure one calculates its centroid C (weighted with the pt of the particles) and

verifies whether the segment centred on C encloses the same set of points as the original

enclosure. If it does then C is the centre of a stable segment.

A simple way of finding all distinct segment-enclosures is illustrated in figure 2. First

one sorts the points into order on the line. One then places the segment far to the left and

slides it so that it goes infinitesimally beyond the leftmost point. This is a first enclosure.

Then one slides the segment again until its right edge encounters a new point or the left

edge encounters a contained point. Each time either edge encounters a point, the point-

content of the segment changes and one has a new distinct enclosure. Establishing the

stability of each enclosure is trivial, since one knows how far the segment can move in each

direction without changing its point content — so if the centroid is such that the segment

remains within these limits, the enclosure corresponds to a stable segment.

The computational complexity of the above procedure, N ln N , is dominated by the

need to sort the points initially: there are O (N) distinct enclosures and, given the sorted

list, finding the next point that will enter or leave an edge costs O (1) time, as does updating

the weighted centroid (assuming rounding errors can be neglected), so that the time not

associated with the sorting step is O (N).

4.2 The two-dimensional case

4.2.1 General approach

The solution to the full problem can be seen as a 2-dimensional generalisation of the

– 8 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

(a) (b) (c) (d)

Figure 3: (a) Some initial circular enclosure; (b) moving the circle in a random direction until

some enclosed or external point touches the edge of the circle; (c) pivoting the circle around the

edge point until a second point touches the edge; (d) all circles defined by pairs of edge points

leading to the same circular enclosure.

above procedure.6 The key idea is again that of trying to identify all distinct circular

enclosures, which we also call distinct cones (by ‘distinct’ we mean having a different point

content), and testing the stability of each one. In the one-dimensional example there was a

single degree of freedom in specifying the position of the segment and all distinct segment

enclosures could be obtained by considering all segments with an extremity defined by a

point in the set. In 2 dimensions there are two degrees of freedom in specifying the position

of a circle, and as we shall see, the solution to finding all distinct circular enclosures will

be to examine all circles whose circumference lies on a pair of points from the set.

To see in detail how one reaches this conclusion, it is useful to examine figure 3. Box

(a) shows a circle enclosing two points, the (red) crosses. Suppose, in analogy with figure 2

that one wishes to slide the circle until its point content changes. One might choose a

direction at random and after moving a certain distance, the circle’s edge will hit some

point in the plane, box (b), signalling that the point content is about to change. In the

1-dimensional case a single point, together with a binary orientation (taking it to be the

left or right-hand point) were sufficient to characterise the segment enclosure. However in

the 2-dimensional case one may orient the circle in an infinite number of ways. We can

therefore pivot the circle around the boundary point. As one does this, at some point a

second point will then touch the boundary of the circle, box (c).

The importance of figure 3 is that it illustrates that for each and every enclosure, one

can always move the corresponding circle (without changing the enclosure contents) into

a position where two points lie on its boundary.7 Conversely, if one considers each circle

whose boundary is defined by a pair of points in the set, and considers all four permutations

6We illustrate the planar problem rather than the cylindrical one since for R < π/2 the latter is a trivial

generalisation of the former.
7There are two minor exceptions to this: (a) for any point separated from all others by more than 2R,

the circle containing it can never have more than that one point on its edge — any such point forms a

stable cone of its own; (b) there may be configurations where three or more points lie on the same circle

of radius R (i.e. are cocircular) — given a circle defined by a pair of them, the question of which of the

others is in the circle becomes ambiguous and one should explicitly consider all possible combinations of

inclusion/exclusion; a specific case of this is when there are collinear momenta (coincident points), which

can however be dealt more simply by immediately merging them.

– 9 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

of the edge points being contained or not in the enclosure, then one will have identified

all distinct circular enclosures. Note that one given enclosure can be defined by several

distinct pairs of particles, which means that when considering the enclosures defined by all

pairs of particles, we are likely to find each enclosure more than once, cf. figure 3d.

A specific implementation of the above approach to finding the stable cones is given

as algorithm 2 below. It runs in expected time O (Nn lnn) where N is the total number

of particles and n is the typical number of particles in a circle of radius R.8 The time

is dominated by a step that establishes a traversal order for the O (Nn) distinct circular

enclosures, much as the one-dimensional (N ln N) example was dominated by the step

that ordered the O (N) distinct segment enclosures.9 Some aspects of algorithm 2 are

rather technical and are explained in the subsubsection that follows. A reader interested

principally in the physics of the algorithm may prefer to skip it on a first reading.

4.2.2 Specific computational strategies

A key input in evaluating the computational complexity of various algorithms is the knowl-

edge of the number of distinct circular enclosures (or ‘distinct cones’) and the number of

stable cones. These are both estimated in appendix A.1, and are respectively O (Nn) and

(expected) O (N).

Before giving the 2-dimensional analogue of the 1-d algorithm of section 4.1 we examine

a simple ‘brute force’ approach for finding all stable cones. One takes all ∼ Nn pairs of

points within 2R of each other and for each pair identifies the contents of the circle and

establishes whether it corresponds to a stable cone, at a cost of O (N) each time, leading to

an overall N2n total cost. This is to be compared to a standard midpoint cone algorithm,

whose most expensive step will be the iteration of the expected O (Nn) midpoint seeds, for

a total cost also of N2n, assuming the average number of iterations from any given seed to

be O (1).10

One can reduce the computational complexity by using some of the ideas from the 1-d

example, notably the introduction of an ordering for the boundary points of circles, and

the use of the boundary points as sentinels for instability. Specifically, three elements will

be required:

(i) one needs a way of labelling distinct cones that allows one to test whether two cones

are the same at a cost of O (1);

(ii) one needs a way of ordering one’s examination of cones so that one can construct the

cones incrementally, so as not to pay the (at least, see below) O (
√

n) construction

price anew for each cone;

8Given a detector that extends to rapidities y < ymax, n/N ∼ πR2/(4πymax), which is considerably

smaller than 1 — this motivates us to distinguish n from N .
9For comparison we note that the complexity of public midpoint algorithm implementations scales as

N2n.
10In both cases one can reduce this to Nn2 by tiling the plane into squares of edge-length R and restricting

the search for the circle contents to tiles in the vicinity of the circle centre.

– 10 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

Algorithm 2 Procedure for establishing the list of all stable cones (protojets). For sim-

plicity, parts related to the special case of multiple cocircular points (see footnote 7) are

not shown. They are a straightforward generalisation of steps 6 to 13.

1: For any group of collinear particles, merge them into a single particle.

2: for particle i = 1 . . . N do

3: Find all particles j within a distance 2R of i. If there are no such particles, i forms

a stable cone of its own.

4: Otherwise for each j identify the two circles for which i and j lie on the circumference.

For each circle, compute the angle of its centre C relative to i, ζ = arctan ∆φiC

∆yiC
.

5: Sort the circles found in steps 3 and 4 into increasing angle ζ.

6: Take the first circle in this order, and call it the current circle. Calculate the total

momentum and checkxor for the cones that it defines. Consider all 4 permutations

of edge points being included or excluded. Call these the “current cones”.

7: repeat

8: for each of the 4 current cones do

9: If this cone has not yet been found, add it to the list of distinct cones.

10: If this cone has not yet been labelled as unstable, establish if the in/out status

of the edge particles (with respect to the cone momentum axis) is the same as

when defining the cone; if it is not, label the cone as unstable.

11: end for

12: Move to the next circle in order. It differs from the previous one either by a

particle entering the circle, or one leaving the circle. Calculate the momentum for

the new circle and corresponding new current cones by adding (or removing) the

momentum of the particle that has entered (left); the checkxor can be updated by

XORing with the label of that particle.

13: until all circles considered.

14: end for

15: for each of the cones not labelled as unstable do

16: Explicitly check its stability, and if it is stable, add it to the list of stable cones

(protojets).

17: end for

(iii) one needs a way limiting the number of cones for which we carry out a full stability

test (which also costs at least
√

n).

To label cones efficiently, we assign a random q-bit integer tag to each particle. Then

we define a tag for combinations of particles by taking the logical exclusive-or of all the

tags of the individual particles (this is easily constructed incrementally and is sometimes

referred to as a checkxor). Then two cones can be compared by examining their tags,

rather than by comparing their full list of particles. With such a procedure, there is a risk

of two non-identical cones ending up with identical tags (‘colliding’), which strictly speaking

will make our procedure only ‘almost exact’. The probability p of a collision occurring is

roughly the square of the number of enclosures divided by the number of distinct tags.

– 11 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

Since we have O (Nn) enclosures, this gives p ∼ N2n2/2q. By taking q sufficiently large

(in a test implementation we have used q = 96) and using a random number generator

that guarantees that all bits are decorrelated [22], one can ensure a negligible collision

probability.11

Given the ability to efficiently give a distinct label to distinct cones, one can address

points ii) and iii) mentioned above by following algorithm 2. Point (ii) is dealt with by

steps 2–6, 12 and 13: for each particle i, one establishes a traversal order for the circles

having i on their edge — the traversal order is such that as one works through the circles,

the circle content changes only by one particle at a time, making it easy to update the

momentum and checkxor for the circle.12 One maintains a record of all distinct cones in

the form of a hash (as a hash function one simply takes log2 Nn bits of the tag), so that it

only takes O (1) time to check whether a cone has been found previously.

Rather than explicitly checking the stability of each distinct cone, the algorithm

examines whether the multiple edge points that define the cone are appropriately in-

cluded/excluded in the circle around the cone’s momentum axis, step 10. All but a tiny

fraction of unstable cones fail this test, so that at the end of step 14 one has a list (of size

O (N)) of candidate stable cones — at that point one can carry out a full stability test for

each of them. This therefore deals with point (iii) mentioned above.

The dominant part of algorithm 2 is the ordering of the circles, step 5, which takes

n ln n time and must be repeated N times. Therefore the overall cost is Nn lnn. As well

as computing time, a significant issue is the memory use, because one must maintain a

list of all distinct cones, of which there are O (Nn). One notes however that standard

implementations of the split-merge step of the cone algorithm also require O (Nn) storage,

albeit with a smaller coefficient.

It is worth highlighting also an alternative approach, which though slower, O
(

Nn3/2
)

,

has lower memory consumption and also avoids the small risk of inexactness from the

checkxor. It is similar to the brute-force approach, but uses 2-dimensional computational

geometry tree structures, such as quad-trees [23] or k-d trees [24]. These involve successive

sub-divisions of the plane (in quadrants, or pairs of rectangles), similarly to what is done

in 1-dimensional binary trees. They make it possible to check the stability of a given circle

in
√

n time (the time is mostly taken by identifying tree cells near the edge of the circle,

of which there are O (
√

n)), giving an overall cost of Nn3/2. The memory use of this form

of approach is O (N
√

n), simply the space needed to store the stable-cone contents.13

11A more refined analysis shows that we need only worry about collisions between the tags of stable cones

and other (stable or unstable) cones — since there are O (N) stable cones, the actual collision probability

is more likely to be O
`

Nn2
´

/2q . In practice for N ∼ 104 and n ∼ 103 (a very highly populated event) and

using q = 96, this gives p ∼ 10−18. In principle to guarantee an infinitesimal collision probability regardless

of N, q should scale as ln N , however N will in any case be limited by memory use (which scales as Nn) so

a fixed q is not unreasonable.
12Rounding errors can affect the accuracy of the momentum calculated this way; the impact of this can

be minimised by occasionally recomputing the momentum of the circle from scratch.
13Though here we are mainly interested in exact approaches, one may also examine the question of the

speed of the approximate seedless approach of Volobouev [17]. This approach represents the event on a grid

and essentially calculates the stability of a cone at each point of the grid using a Fast Fourier transform

– 12 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

Algorithm 3 The disambiguated, scalar p̃t based formulation of a Tevatron Run-II type

split-merge procedure [6], with overlap threshold parameter f and transverse momentum

threshold pt,min. To ensure boost invariance and IR safety, for the ordering variable and the

overlap measure, it uses of p̃t,jet =
∑

i∈jet |pt,i|, i.e. a scalar sum of the particle transverse

momenta (as in a ‘pt’ recombination scheme).

1: repeat

2: Remove all protojets with pt < pt,min.

3: Identify the protojet (i) with the highest p̃t.

4: Among the remaining protojets identify the one (j) with highest p̃t that shares

particles (overlaps) with i.

5: if there is such an overlapping jet then

6: Determine the total p̃t,shared =
∑

k∈i&j |pt,k| of the particles shared between i and

j.

7: if p̃t,shared < fp̃t,j then

8: Each particle that is shared between the two protojets is assigned to the one to

whose axis it is closest. The protojet momenta are then recalculated.

9: else

10: Merge the two protojets into a single new protojet (added to the list of protojets,

while the two original ones are removed).

11: end if

12: If steps 7–11 produced a protojet that coincides with an existing one, maintain

the new protojet as distinct from the existing copy(ies).

13: else

14: Add i to the list of final jets, and remove it from the list of protojets.

15: end if

16: until no protojets are left.

4.3 The split-merge part of the cone algorithm

The split-merge part of our cone algorithm is basically that adopted for Run-II of

the Tevatron [6]. It is shown in detail as algorithm 3. Since it does not depend on the

procedure used to find stable cones, it may largely be kept as is. We do however include

the following small modifications:

(i) The run II proposal used Et throughout the split-merge procedure. This is not

invariant under longitudinal boosts. We replace it with p̃t, a scalar sum of the

transverse momenta of the constituents of the protojet. This ensures that the results

are both boost-invariant and infrared safe. We note that choosing instead pt (a

seemingly natural choice, made for example in the code of [19, 13]) would have led

(FFT). In principle, for this procedure to be as good as the exact one, the grid should be fine enough to

resolve each distinct cone, which implies that it should have O (Nn) points; therefore the FFT will require

O (Nn ln Nn) time, which is similar in magnitude to the time that is needed by the exact algorithm. An

open question remains that of whether a coarser grid might nevertheless be ‘good enough’ for many practical

applications.

– 13 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

to IR unsafety in purely hadronic events — the question of the variable to be used

for the ordering is actually a rather delicate one, and we discuss it in more detail in

appendix B.2.

(ii) We introduce a threshold pt,min below which protojets are discarded (step 2 of algo-

rithm 3). This parameter is motivated by the discussion in [6] concerning problems

associated with an ‘excess’ of stable cones in seedless algorithms, notably in events

with significant pileup. It provides an infrared and collinear safe way of removing the

resulting large number of low pt stable cones. By setting it to zero one recovers a be-

haviour identical to that of the Run-II algorithm (modulo the replacement Et → p̃t,

above), and we believe that in practice zero is actually a sensible default value. We

note that a similar parameter is present in PxCone [12, 7].

(iii) After steps 7–11, the same protojet may appear more than once in the list of protojets.

For example a protojet may come once from a single original stable cone, and a second

time from the splitting of another original stable cone. The original statement of the

split-merge procedure [6] did not address this issue, and there is a resulting ambiguity

in how to proceed. One option (as is done for example in the seedless cone code of [19])

is to retain only a single copy of any such identical protojets. This however introduces

a new source of infrared unsafety: an added soft particle might appear in one copy of

the protojet and not the other and the two protojets would then no longer be identical

and would not be reduced to a single protojet. This could (and does occasionally, as

evidenced in section 5.1) alter the subsequent split-merge sequence. If one instead

maintains multiple identical protojets as distinct entities (as is done in the codes

of [13, 18]), then the addition of a soft particle does not alter the number of hard

protojet entries in the protojet list and the split-merge part of the algorithm remains

infrared safe. We therefore choose this second option, and make it explicit as step 12

of algorithm 3.

The split-merge procedure is guaranteed to terminate because the number of overlapping

pairs of protojets is reduced each time an iteration of the loop finds an overlap. A proof of

the infrared safety of this (and the other) parts of our formulation of the cone algorithm is

given in appendix B. The computational complexity (O
(

N2
)

) of the split-merge procedure

is generally smaller than that of the stable-cone search, and so we relegate its discussion

to appendix A.2.

Finally, before closing this section, let us return briefly to the top-level of the cone

formulation, algorithm 1 and the question of the loop over multiple passes. This loop

contains just the stable-cone search, and one might wonder why the split-merge step has

not also been included in the loop. First consider pt,min = 0: protojets found in different

passes cannot overlap, and the split-merge procedure is such that if a particle is in a protojet

then it will always end up in a jet. Therefore it is immaterial whether the split-merge step

is kept inside or outside the loop. The advantage of keeping it outside the loop is that one

may rerun the algorithm with multiple overlap values f simply by repeating the split-merge

step, without repeating the search for stable cones. For pt,min 6= 0 the positioning of the

– 14 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

Algorithm Type IR unsafe Code

JetClu Seeded, no midpoints 2h+1s [9] [13]

SearchCone Seeded, search cone [21], midpoints 2h+1s [1] [13]

MidPoint Seeded, midpoints (2-way) 3h+1s [1] [13]

MidPoint-3 Seeded, midpoints (2-way, 3-way) 3h+1s [13]

PxCone Seeded, midpoints (n-way), non-standard SM 3h+1s [12]

Seedless [SM-pt] Seedless, SM uses pt 4h+1s14 [here]

Seedless [SM-MIP] Seedless, SM merges identical protojets 4h+1s15 [here]

Seedless [SISCone] Seedless, SM of algorithm 3 no [here]

Table 3: Summary of the various cone jet algorithms and the code used for tests here; SM stands for

“split-merge”; Nh+Ms indicates that infrared unsafety is revealed with configurations consisting of

N hard particles and M soft ones, not counting an additional hard, potentially non-QCD, particle

to conserve momentum. All codes have been used in the form of plugins to FastJet (v2.1) [20].

split-merge step with respect to the Npass loop would affect the outcome of the algorithm if

all particles not found in first-pass jets were to be inserted into the second pass stable-cone

search. Our specific formulation constitutes a design choice, which allows one to rerun with

different values of f and pt,min without repeating the stable-cone search.

5. Tests and comparisons

5.1 Measures of IR (un)safety

In section 4 we presented a procedure for finding stable cones that is explicitly IR safe. In

appendix B we provide a proof of the IR safety of the rest of the algorithm. The latter is

rather technical and not short, and while we have every reason to believe it to be correct,

we feel that there is value in supplementing it with complementary evidence for the IR

safety of the algorithm. As a byproduct, we will obtain a measure of the IR unsafety of

various commonly used formulations of the cone algorithm.

To verify the IR safety of the seedless cone algorithm, we opt for a numerical Monte

Carlo approach, in analogy with that used in [25] to test the more involved recursive

infrared and collinear safety (a prerequisite for certain kinds of resummation). The test

proceeds as follows. One generates a ‘hard’ event consisting of some number of randomly

distributed momenta of the order of some hard scale pt,H , and runs the jet algorithm on the

hard event. One then generates some soft momenta at a scale pt,S ≪ pt,H , adds them to the

hard event (randomly permuting the order of the momenta) and reruns the jet algorithm.

One verifies that the hard jets obtained with and without the soft event are identical. If

they are not, the jet algorithm is IR unsafe. For a given hard event one repeats the test

with many different add-on soft events so as to be reasonably sure of identifying most hard

events that are IR unsafe. One then repeats the whole procedure for many hard events.

14Failures on 4h+1s arise only for R > π/4; for smaller R, failures arise only for higher multiplicities.
15Failures for 4h+1s are extremely rare, but become more common for 5h+1s and beyond.

– 15 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

The hard events are produced as follows: we choose a linearly distributed random

number of momenta (between 2 and 10) and for each one generate a random pt (linearly

distributed, 2−24pt,H ≤ pt ≤ pt,H , with pt,H = 1000GeV), a random rapidity (linearly

distributed in −1.5 < y < 1.5) and a random φ. For each hard event we also choose

random parameters for the jet algorithm, so as to cover the jet-algorithm parameter space

(0.3<R<1.57, 0.25<f <0.95, linearly distributed, the upper limit on R being motivated

by the requirement that R < π/2; the pt,min on protojets is set to 0 and the number of

passes is set to 1). For each add-on soft event we generate between 1 and 5 soft momenta,

distributed as the hard ones, but with the soft scale pt,S = 10−100 GeV replacing pt,H .

We note that the hard events generated as above do not conserve momentum — they

are analogous to events with a missing energy component or with identified photons or

leptons that are not given as inputs to the jet clustering. For the safety studies on the

full SISCone algorithm, we therefore also generate a set of hard events which do have

momentum conservation, analogous to purely hadronic events.

To validate our approach to testing IR safety, we apply it to a range of cone jet

algorithms, listed in table 3, including the many variants that are IR unsafe. In PxCone

the cut on protojets is set to 1GeV and in the SearchCone algorithm the search cone radius

is set to R/2.

The fraction of hard events failing the safety test is shown in figure 4 for each of the

jet algorithms.16 All jet algorithms that are known to be IR unsafe do indeed fail the tests.

One should be aware that the absolute failure rates depend to some extent on the way we

generated the hard events, and so are to be interpreted with caution. Having said that,

our hard events have a complexity similar to the Born-level (lowest-order parton-level)

of events that will be studied at LHC, for example in the various decay channels of tt̄H

production, and so both the order of magnitudes of the failure rates and their relative sizes

should be meaningful.

Algorithms that fail on ‘2h+1s’ events have larger failure rates than those that fail

on ‘3h+1s’ events, as would be expected — they are ‘more’ infrared unsafe. One notes

the significant failure rates for the midpoint algorithms, ∼ 16%, and the fact that adding

3-way midpoints (i.e. between triplets of stable cones) has almost no effect on the failure

rate, indicating that triangular configurations identified as IR unsafe in [1] are much less

important than others such as that discussed in section 3. PxCone’s smaller failure rate

seems to be due not to its multi-way midpoints, but rather to its specific split-merge

procedure which leads to fewer final jets (so that one is less sensitive to missing stable

cones).

Seedless algorithms with problematic split-merge procedures lead to small failure rates

(restricting one’s attention to small values of R, these values are further reduced). One

might be tempted to argue that such small rates of IR safety failure are unlikely to have

a physical impact and can therefore be ignored. However there is always a risk of some

16The results are based on 80 trial soft add-on events for each hard event and should differ by no more

than a few percent (relative) from a full determination of the IR safety for each hard event (which would be

obtained in the limit of an infinite number of trial soft add-on events for each hard event). For SISCone we

only use 20 soft add-on events, so as to make it possible to probe a larger number of hard configurations.

– 16 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

10-5 10-4 10-3 10-2 10-1 1

Fraction of hard events failing IR safety test

JetClu

SearchCone

PxCone

MidPoint

Midpoint-3

Seedless [SM-pt]

Seedless [SM-MIP]

Seedless (SISCone)

50.1%

48.2%

16.4%

15.6%

9.3%

1.6%

0.17%

< 10-9

Figure 4: Failure rates for the IR safety tests. The algorithms are as detailed in table 3. Seeded

algorithms have been used with a zero seed threshold. The events used do not conserve momentum

(i.e. have a missing energy component), except for the seedless SM-pt case (where all events conserve

momentum, to highlight the issue that arises in that case) and for SISCone (where we use a mix of

momentum conserving and non-conserving events so as to fully test the algorithm). Further details

are given in the text

specific study being unusually sensitive to these configurations, and in any case our aim

here is to provide an algorithm whose IR safety is exact, not just approximate.

Finally, with a ‘good’ split-merge procedure, that given as algorithm 3, none of the over

5 × 109 hard events tested (a mix both with and without momentum conservation) failed

the IR safety test. For completeness, we have carried out limited tests also for Npass = ∞
and with a pt,min on protojets of 100GeV, and have additionally performed tests with a

larger range of rapidities (|y| < 3), collinearly-split momenta, cocircular configurations,

three scales instead of two scales and again found no failures. These tests together with

the proof given in appendix B give us a good degree of confidence that the algorithm truly

is infrared safe, hence justifying its name.

5.2 Speed

As can be gathered from the discussion in [6], reasonable speed is an essential requirement

if a new variant of cone jet algorithm is to be adopted. To determine the speed of various

cone jet algorithms, we use the same set of events taken for testing the FastJet formulation

of the kt jet algorithm in [20] — these consist of a single Pythia [26] dijet event (with

pt,jets ≃ 50GeV) to which we add varying numbers of simulated minimum bias events so

as to vary the multiplicity N . Thus the event structure should mimic that of LHC events

with pileup.

– 17 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000

ru
n

tim
e

(s
)

N

CDF midpoint (s=0 GeV)

CDF midpoint (s=1 GeV)

PxCone

SISCone
kt (fastjet)

Figure 5: Time to cluster N particles, as a function of N , for various algorithms, with R = 0.7

and f = 0.5, on a 3.4GHz Pentium r© IV processor. For the CDF midpoint algorithm, s is the

threshold transverse momentum above which particles are used as seeds.

Figure 5 shows the time needed to find jets in one event as a function of N . Among

the seeded jet algorithms we consider only codes that include midpoint seeds. For the

(CDF) midpoint code [13], written in C++, there is an option of using only particles above

a threshold s as seeds and we consider both the common (though collinear unsafe) choice

s = 1GeV and the (collinear safe but IR unsafe) s = 0GeV. The PxCone code [12], written

in Fortran 77, has no seed threshold.

Our seedless code, SISCone, is comparable in speed to the fastest of the seeded codes,

the CDF midpoint code with a seed threshold s = 1GeV, and is considerably faster than

the codes without a seed threshold (not to mention existing exact seedless codes which take

∼ 1 s to find jets among 20 particles and scale as N2N). Its run time also increases more

slowly with N than that of the seeded codes, roughly in agreement with the expectation

of SISCone going as Nn ln n (with a large coefficient) while the others go as N2n. The

midpoint code with s = 1GeV has a more complex N -dependence presumably because

we have run the timing on a single set of momenta, and the proportionality between the

number of seeds and N fluctuates and depends on the event structure.

For comparison purposes we have also included the timings for the FastJet (v2) kt

implementation, which for these values of N uses a strategy that involves a combina-

tion of N ln N and Nn dependencies. Timings for the FastJet implementation of the

– 18 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

Aachen/Cambridge algorithm are similar to those for the kt algorithm.

5.3 Rsep: an inexistent problem

Suppose we have two partons separated by ∆R and with transverse momenta pt1 and pt2

(pt1 > pt2). Both partons end up in the same jet if the cone containing both is stable, i.e.

if
∆R

R
< 1 + z , z =

pt2

pt1
, (5.1)

where the result is exact for small R or with pt-scheme recombination. Equivalently one

can write the probability for two partons to be clustered into a single jet as

P2→1(∆R, z) = Θ

(

1 + z − ∆R

R

)

. (5.2)

The limit on ∆R/R ranges from 1 for z = 0 to 2 for z = 1. This z-dependent limit is the

main low-order perturbative difference between the cone algorithm and inclusive versions

of sequential recombination ones like the kt or Cambridge/Aachen algorithms, since the

latter merge two partons into a single jet for ∆R/R < 1, independently of their energies.

A statement regularly made about cone algorithms (see for example [21, 1, 27]) is

that parton showering and hadronisation reduce the stability of the cone containing the

‘original’ two partons, leading to a modified ‘practical’ condition for two partons to end up

in a single jet,
∆R

R
< min (Rsep , 1 + z) , (5.3)

or equivalently,

P2→1(∆R, z) = Θ

(

1 + z − ∆R

R

)

Θ

(

Rsep − ∆R

R

)

, (5.4)

with Rsep ≃ 1.3 [28, 29].17 This situation is often represented as in figure 6, which depicts

the ∆R, z plane, and shows the regions in which two partons are merged into one jet

or resolved as two jets. The boundary ∆R = 1 + z corresponds to eq. (5.1), while the

alternative boundary at ∆R = Rsep is eq. (5.3).

So large a difference between the low-order partonic expectation and hadron-level

results would be quite a worrying feature for a jet algorithm — after all, the main purpose

of a jet algorithm is to give as close a relation as possible between the first couple of orders

of perturbation theory and hadron level.18

The evidence for the existence of eq. (5.4) with Rsep = 1.3 seems largely to be based [28,

29] on merging two events (satisfying some cut on the jet pt’s), running the jet-algorithm

17The name Rsep was originally introduced [30] in the context of NLO calculations of hadron-collider

jet-spectra, but with a different meaning — there it was intended as a free parameter to model the lack

of knowledge about the details of the definition of the cone jet algorithm used experimentally. This is

rather different from the current use as a parameter intended to model our inability to directly calculate

the impact of higher-order and non-perturbative dynamics of QCD in cone algorithms.
18The apparent lack of correspondence is considered sufficiently severe that in some publications (e.g.

[11]) the NLO calculation is modified by hand to compensate for this.

– 19 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

Rsep = 1.3?

1+z

TWO JETS

 0 0.5 1 1.5 2 2.5
∆R / R

 0

 0.5

 1

p
z

=
t,2

/p
t,1

ONE JET

NP: 2 jets?
PT: 1 jet?

Figure 6: Schematic representation of the phase space region in which two partons will end up in

a single cone jet versus two jets, at the 2-parton level (PT) and, according to the Rsep statement,

after showering and hadronisation (NP).

on the merged event, and examining at what distance particles from the two events end up

in the same jet. This approach indicated that particles were indeed less likely to end up

in the same jet if they were more than 1.3R apart, however the result is an average over

a range of z values making it hard to see whether eq. (5.4) is truly representative of the

underlying physics.19

To address the question in more depth we adopt the following strategy. Rather than

combining different events, we use one event at a time, but with two different jet algorithms.

On one hand we run SISCone with a fairly small value of R, Rcone = 0.4. Simultaneously

we run inclusive kt jet-clustering [2] on the event, using a relatively large R (Rkt
= 1.0),

and identify any hard kt-jets. For each hard kt jet we undo its last clustering step so as to

obtain two subjets, S1 and S2 — these are taken to be the analogues of the two partons.

We then examine whether there is a cone jet that contains more than half of the pt of

each of S1 and S2. If there is, the conclusion is that the two kt subjets have ended up

(dominantly) in a single cone jet.

The procedure is repeated for many events, and one then examines the probability,

P2→1(∆R, z), of the two kt subjets being identified with a single cone jet, as a function of

the distance ∆R between the two subjets, S1 and S2, and the ratio z of their pt’s. The

results are shown in figure 7 both at parton-shower level and at hadron level, as simulated

with Herwig [31]. The middle contour corresponds to a probability of 1/2. At parton-

shower level this contour coincides remarkably well with the boundary defined by eq. (5.1),

up to ∆R/R = 1.7. It is definitely not compatible with eq. (5.3) with Rsep = 1.3. Beyond

∆R/R = 1.7 the contour bends a little and one might consider interpreting this as an

Rsep ≃ 1.8.20 However, in that region the transition between P = 1 and P = 0 is broad,

and to within the width of the transition, there remains good agreement with eq. (5.1) — it

seems more natural therefore to interpret the small deviation from eq. (5.1) as a Sudakov-

19A preliminary version of [27] showed more differential results; these, however, seem not to be in the

definitive version.
20Such a value has been mentioned to us independently by M. Wobisch in the context of unpublished

studies of jet shapes for the SearchCone algorithm [21].

– 20 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

0.0

0.5

1.0

0.75
0.50
0.25

 0 0.5 1 1.5 2 2.5
∆R / Rcone

 0

 0.5

 1

z
=

 p
t,2

/p
t,1

Prob. 2 kt subjets → 1 cone jet
Rkt

 = 1; Rcone = 0.4

a) parton level

0.0

0.5

1.0

0.75
0.50
0.25

 0 0.5 1 1.5 2 2.5
∆R / Rcone

 0

 0.5

 1

z
=

 p
t,2

/p
t,1

b) hadron level

Figure 7: The probability P2→1(∆R, z) for two kt-algorithm subjets to correspond to a single

cone jet, as a function of pt1/pt2 and ∆R for the two kt subjets. Events have been generated with

Herwig [31] (hadron-level includes the underlying event) and the results are based on studying all

kt jets with pt > 50 GeV and |y| <1. Further details are to be found in the text.

shoulder type structure [32], which broadens and shifts the Θ-function of eq. (5.2), as would

happen with almost any discontinuity in a leading-order QCD distribution.

Once one includes hadronisation effects in the study, figure 7b, one finds that the

transition region broadens further, as is to be expected. Now the P = 1/2 contour shifts

away slightly from the 1 + z result at small z as well. However, once again this shift is

modest, and of similar size as the breadth of the transition region.

To verify the robustness of the above results we have examined other related indicators.

One of them is the probability, P2→2 of finding two cone jets, each containing more than

half of the transverse momentum of just one of the kt subjets. At two-parton level, one

expects P1→2 + P2→2 = 1. Deviation from this would indicate that our procedure for

matching cone jets to kt jets is misbehaving. We find that the relation holds to within

around 15% over most of the region, deviating by at most ∼ 25% in a small corner of phase

space ∆R/R ≃ 1.5, z ≃ 0.2. Another test is to examine the fraction F2 of the softer S2’s

transverse momentum that is found in the cone that overlaps dominantly with S1. At two-

parton level this should be equal to P2→1, but this would not be the case after showering

if there were underlying problems with our matching procedure. We find however that F2

does agree well with P2→1. These, together with yet further tests, lead to us to believe

that conclusions drawn from figure 7 are robust. Finally, while these results have been

obtained within a Monte Carlo simulation, Herwig, a similar study could equally be well

carried experimentally on real events.

– 21 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

So, in contrast to statements that are often made about the cone jet algorithm, the

perturbative picture of when two partons will recombine, given by eq. (5.2), seems to be a

relatively good indicator of what happens even after perturbative radiation and hadronisa-

tion. In particular the evidence that we have presented strongly disfavours the Rsep-based

modification, eq. (5.4). This is a welcome finding, and should help provide a firmer basis

for cone-based phenomenology.

5.4 Physics impact of seedless v. midpoint cone

In this section, we discuss the impact on physical measurement of switching from a midpoint

type algorithm to a seedless IR-safe one such as SISCone. We study two physical observ-

ables, the inclusive jet spectrum and the jet mass spectrum in 3-jet events. The spectra

have been obtained by generating events with a Monte-Carlo either at fixed order in per-

turbation theory (NLOJet [19]) or with parton showering and hadronisation (Pythia [26]),

and by performing the jet analysis on each event using three different algorithms (each with

R = 0.7 and f = 0.5, and additionally in the case of SISCone, Npass = 1 and pt,min = 0):

(i) SISCone: the seedless, IR-safe definition described in algorithms 1–3;

(ii) midpoint(0): the midpoint algorithm using all particles as seeds;

(iii) midpoint(1): the midpoint algorithm using as seeds all particles above a threshold of

1GeV.

We have used a version of the CDF implementation of the midpoint algorithm modified to

have the split-merge step based on p̃t rather than pt (so that it corresponds to algorithm 4.3

with pt,min = 0). The motivation for this is that we are mainly interested in the physics

impact of having midpoint versus all stable cones, and the comparison is simplest if the

subsequent split-merge procedure is identical in both cases.21

We shall first present the results obtained for the inclusive jet spectrum and then

discuss the jet mass spectrum in 3-jet events. Most studies carried out in this section

have used kinematics corresponding to the Tevatron Run II, i.e. a centre-of-mass energy√
s = 1.96 TeV, and usually, for simplicity we have chosen not to impose any cuts in

rapidity.

5.4.1 Inclusive jet spectrum

As discussed in section 3, the differences between the midpoint algorithm and SISCone are

expected to start when we have 3 particles in a common neighbourhood plus one to balance

momentum. For pure QCD processes this corresponds to 2 → 4 diagrams, O
(

α4
s

)

. This is

NNLO for the inclusive spectrum. Though a NNLO calculation of the inclusive spectrum

is beyond today’s technology (for recent progress, see [33]), we can easily calculate the

21We could also have compared SISCone with a midpoint algorithm using pt in the split-merge (a common

default); the figures we show below would have stayed unchanged at the 1% level for the inclusive spectrum,

while for the jet masses the effects range between a few percent at moderate masses and 10 − 20% in the

high-mass tail.

– 22 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

20 40 60 80 100 120 140 160 180 200
10-4

10-3

10-2

10-1

1

101

102

103

104

dσ
/d

p T
 (

nb
/G

eV
)

inclusive pT spectrum (all y)

SISCone (Born level, 0(αs
2))

|midpoint(0) -- SISCone| 0(αs
4)

(a)

NLOJet
R=0.7, f=0.5

20 40 60 80 100 120 140 160 180 200
pT (GeV)

-0.02

-0.01

0

re
l.

di
ff.

20 40 60 80 100 120 140 160 180 200
pT (GeV)

-0.02

-0.01

0

re
l.

di
ff.

(b)

Figure 8: (a) Inclusive jet spectrum: the upper curve gives the leading-order (O
(

α2
s

)

) spectrum,

while the lower (blue) curve gives the difference between the SISCone and midpoint(0) algorithm,

obtained from the O
(

α4
s

)

tree-level amplitude; (b) the relative difference.

O
(

α4
s

)

difference between midpoint and SISCone, using just tree-level 2 → 4 diagrams,

since the difference between the algorithms is zero at orders α2
s and α3

s, i.e. we can neglect

two-loop 2 → 2 diagrams and one-loop 2 → 3 diagrams. The significance of the difference

can be understood by comparing to the leading order spectrum, which is identical for the

two algorithms.

Figure 8 shows the resulting spectra: the upper plot gives the leading order inclusive

spectrum together with the difference between SISCone and midpoint(0) at O
(

α4
s

)

. The

lower plot shows the relative difference. One sees that the use of the IR-safe seedless cone

algorithm introduces modest corrections, of order 1-2%, in the inclusive jet spectrum. This

order of magnitude is roughly what one would expect, since the differences only appear at

relative order α2
s. As we will see below, larger differences will appear when one examines

– 23 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

 50 100 150 200

dσ
m

id
po

in
t(

1)
/d

p t
 /

dσ
S

IS
C

on
e/

dp
t −

 1

pt [GeV]

pp− √s = 1.96 TeV

R=0.7, f=0.5, |y|<0.7Pythia 6.4

(a) hadron-level (with UE)

hadron-level (no UE)

parton-level

0.00

0.05

0.10

0.15

 50 100 150 200

dσ
m

id
po

in
t(

1)
/d

p t
 /

dσ
S

IS
C

on
e/

dp
t −

 1

pt [GeV]

pp √s = 14 TeV

R=0.7, f=0.5, |y|<0.7Pythia 6.4

(b) hadron-level (with UE)

hadron-level (no UE)

parton-level

Figure 9: Relative difference between the inclusive jet spectra for midpoint(1) and SISCone,

obtained from Pythia at parton level, hadron level without underlying event (UE) contributions,

and hadron level with UE. Shown (a) for Tevatron collisions and (b) for LHC collisions.

more exclusive quantities.

In addition, we have used Herwig and Pythia to investigate the differences between

midpoint(1) and SISCone with parton showering. Both generators give similar results,

and we show the results just of Pythia, figure 9a. The difference at parton level is very

similar to what was observed at fixed order. At hadron level without underlying event (UE)

corrections, the difference remains at the level of 1−2% (though it changes sign); once one

includes the underlying event contributions, the difference increases noticeably at lower

pt — this is because the midpoint(1) algorithm receives somewhat larger UE corrections

than SISCone. Since the underlying event is one of the things that is likely to change from

Tevatron to LHC, in figure 9b we show similar curves for LHC kinematics. At parton level

and at hadron level without the underlying event, the results are essentially the same as for

the Tevatron. With the underlying event included, the impact of the missing stable cones

in the midpoint algorithm reaches of the order of 10 to 15%, and thus starts to become

quite a significant effect. With Herwig, we find that the impact is little smaller because its

underlying event is smaller than Pythia’s at the LHC.

5.4.2 Jet masses in 3-jet events

As well as the inclusive jet pT spectrum, we can also study more exclusive quantities. One

example is the jet-mass spectrum in multi-jet events. Jet-masses are potentially of interest

for QCD studies, particle mass measurements [34] and new physics searches, where they

could be used to identify highly boosted W/Z/H bosons or top quarks produced in the

decays of new heavy particles [35].

The simplest multi-jet events in which to study jet masses are 3-jet events. There, the

masses of all the jets vanish at the 3-particle level. The first order at which the jet masses

become non-zero is O
(

α4
s

)

and this is also the order at which differences appear between

the midpoint and seedless cone algorithms. Therefore, as in section 5.4.1, we generate

2 → 4 tree-level events, but now keep only those with exactly 3 jets with pT ≥ 20 GeV in

– 24 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

0 10 20 30 40 50 60 70 80 90 100
M (GeV)

0

0.05

0.1

0.15

re
l.

di
ff.

 fo
r

dσ
/d

M
2

Mass spectrum of jet 2

midpoint(0) -- SISCone
SISCone

NLOJet
R=0.7, f=0.5

0 10 20 30 40 50 60 70 80 90 100
M (GeV)

0

0.1

0.2

0.3

0.4

0.5

re
l.

di
ff.

 fo
r

dσ
/d

M
2 Mass spectrum of jet 2

midpoint(0) -- SISCone
SISCone

NLOJet
R=0.7, f=0.5
∆ R23 < 1.4

Figure 10: Mass spectrum of the second hardest jet as obtained with the different cone algorithms

on tree-level 4-particle events (generated with NLOJet): the plots shows the relative difference

between the midpoint and SISCone results. In the upper plot we consider all three-jet events

satisfying the transverse-momentum cuts, while in the lower plot (note scale) we consider only

those in which second and third jet are separated by ∆R23 < 2R.

the final state. We further impose that the hardest jet should have a pT of at least 120 GeV

and the second hardest jet a pT of at least 60 GeV. With these cuts we can compute the

jet-mass spectrum for each of the three jets and for the three different algorithms.

In the upper plot of figure 10, we show the relative difference “(midpoint(0) - SIS-

Cone)/SISCone” for the mass spectrum of the second hardest jet. In the lower plot we

show the same quantity for events in which we have placed an additional requirement that

the y−φ distance between the second and third jets be less than 2R (such distance cuts are

often used when trying to reconstruct chains of particle decays). The midpoint algorithm’s

omission of certain stable cones leads to an overestimate of the mass spectrum by up to

∼ 10% without a distance cut (much smaller differences are observed for the first and third

jet) and of over 40% with a distance cut. The problem is enhanced by the presence of the

distance cut because many more of the selected events then have three particles in a com-

mon neighbourhood, and this is precisely the situation in which the midpoint algorithm

misses stable cones (cf. section 3).

We emphasise also that the NLO calculation of these mass spectra would be impossible

with a midpoint algorithm, because the 10− 40% tree-level differences would be converted

– 25 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

 0

 50

 100

 150

 200

 0 10 20 30 40 50

dσ
/d

M
3

(n
b/

G
eV

)

(a) SISCone
midpoint(0)
midpoint(1)

 0 10 20 30 40 50 60 70 80
 0.01

 0.1

 1

 10

 100

dσ
/d

M
3

(n
b/

G
eV

)

(b)

Pythia 6.4 R=0.7, f=0.5

SISCone
midpoint(0)
midpoint(1)

-0.75

-0.5

-0.25

 0

 0.25

 0 10 20 30 40 50 60 70 80

re
l.

di
ff.

M (GeV)

(c) midpoint(0)

 0 10 20 30 40 50 60 70 80
-0.75

-0.5

-0.25

 0

 0.25

re
l.

di
ff.

M (GeV)

(d) midpoint(1)

Figure 11: Mass spectrum of the third hardest jet obtained from the different cone algorithms

run on three-jet Pythia events. The top-left (top-right) plot shows the spectrum in linear (logarith-

mic) scale and the bottom plots show the relative difference between each midpoint algorithm and

SISCone. See the text for the details of the event selection.

into an infrared divergent NLO contribution.

A general comment is that the problems seen here for the midpoint algorithm without

a distance cut are of the same general order of magnitude as the 16% failure rate in the

IR safety tests of section 5.1, suggesting that the absolute failure rates given there are a

good indicator of the degree of seriousness of issues that can arise in generic studies with

the infrared unsafe algorithms.

In addition to this fixed-order parton-level analysis, we have studied the jet masses in

3-jet events at hadron level (i.e. after parton showering and hadronisation) using events

generated with Pythia. At hadron level many more seeds are present, due to the large

particle multiplicity. One might therefore expect the midpoint algorithm to become a

good approximation to the seedless one.

For the mass of the second hardest jet, i.e. the quantity we studied at fixed order in

figure 10, we find that the midpoint and seedless algorithms do give rather similar results

at hadron level. In other words differences that we see in a leading order calculation are

– 26 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

not propagated through to the full hadron level result. This is a serious practical issue

for the midpoint algorithm, because a jet algorithm’s principal role is to provide a good

mapping between low-order parton level and hadron level.

Nevertheless, despite the many seeds that are present at hadron level, we find that

there are still some observables for which the midpoint algorithm’s lack of stable cones

does have a large impact even at hadron level. This is the case that the mass distribution

of the third hardest jet, shown in figure 11 (obtained without a distance cut) on both

linear and logarithmic scales so as to help visualise the various regions of the distribution.

Moderate differences are present in the peak region, but in the tail of the distribution they

become large, up to 50%. They are greater for midpoint(1) than for midpoint(0), because

the seed threshold causes fewer stable cones to be found with the midpoint(1) algorithm.

These results have been checked using the Herwig Monte-Carlo. We have observed

similar differences at parton-shower level, at the hadron level and at the hadron level

including underlying event, both in the peak of the distribution and in the tail. We note

that hadronisation corrections are substantial in the tail of the distribution, both for the

midpoint and SISCone algorithms.

The above results confirm what one might naturally have expected: while very inclusive

quantities may not be overly sensitive to the deficiencies of one’s jet algorithm, as one

extends one’s investigations to more exclusive quantities, those deficiencies begin to have

a much larger impact.

6. Conclusions

Given the widespread use of cone jet algorithms at the Tevatron and their foreseen contin-

ued use at LHC, it is crucial that they be defined in an infrared safe way. This is necessary

in general so as to ensure that low-order parton-level considerations about cone jet-finding

hold also for the fully showered, hadronised jets that are observed in practice. It is also a

prerequisite if measurements are to be meaningfully compared to fixed order (LO, NLO,

NNLO) predictions.

The midpoint iterative cone algorithm currently in use is infrared unsafe, as can be seen

by examining the sets of stable cones that are found for simple three-parton configurations.

This may seem surprising given that the midpoint algorithm was specifically designed to

avoid an earlier infrared safety problem — however the midpoint infrared problem appears

at one order higher in the coupling, and this is presumably why it was not identified in the

original analyses. The tests shown in section 5.1 suggest that the midpoint-cone infrared

safety problems, while smaller than without the midpoint, are actually quite significant

(∼ 15%).

We therefore advocate that where a cone jet algorithm is used, it be a seedless vari-

ant. For such a proposal to be realistic it is crucial that the seedless variant be practi-

cal. The approaches adopted in fixed order codes take O
(

N2N
)

time and are clearly not

suitable in general. Here we have shown that it is possible to carry out exact seedless

jet-finding in expected O
(

Nn3/2
)

time with O
(

Nn1/2
)

storage, or almost exactly22 in

22with a failure probability that can be made arbitrarily small and that we choose to be . 10−18.

– 27 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

expected O (Nn lnn) time with O (Nn) storage (we recall that N is the total number of

particles, n the typical number of particles in a jet). The second of these approaches has

been implemented in a C++ code named SISCone, available also as a plugin for the FastJet

package. For N ∼ 1000 it is comparable in speed to the existing CDF midpoint code with

1GeV seeds. While this is considerably slower than the N ln N and related FastJet strate-

gies [20] for the kt and Cambridge/Aachen jet algorithms, it remains within the limits of

usability and provides for the first time a cone algorithm that is demonstrably infrared and

collinear safe at all orders, and suitable for use at parton level, hadron level and detector

level.

As well as being infrared safe, a jet algorithm must provide a faithful mapping between

expectations based on low-order perturbative considerations, and observations at hadron

level. There has been considerable discussion of worrisome possible violations of such a

correspondence for cone algorithms, the “Rsep” issue. For SISCone we find however that

the correspondence holds well.

An obvious final question is that of the impact on physics results of switching from

the midpoint to the seedless cone. For inclusive quantities, one expects the seedless cone

jet algorithm to give results quite similar to those of the midpoint cone, because the IR

unsafety of the midpoint algorithm only appears at relatively higher orders. This is borne

out in our fixed order and parton-shower studies of the inclusive jet spectrum where we

see differences between the midpoint and SISCone algorithms of about a couple of percent.

At moderate pt at hadron level, the differences can increase to 5 − 10%, because SISCone

has a lower sensitivity to the underlying event, a welcome ‘fringe-benefit’ of the seedless

algorithm.

For less inclusive quantities, for example the distribution of jet masses in multi-jet

events, differences can be significant. We find that for 3-jet events, the absence of some

stable cones (i.e. infrared unsafety) in the midpoint algorithm leads to differences compared

to SISCone at the ∼ 10% level at leading order (α4
s) in a large part of the jet-mass spectrum.

Greater effects still, up to 50%, are seen with specific cuts at fixed order, and in the tails of

the jet-mass spectra for parton-shower events. Thus, even if the infrared safety issues of the

midpoint algorithm appear to be at the limit of today’s accuracy when examining inclusive

quantities, for measurements of even moderate precision in multi-jet configurations (of

increasing interest at Tevatron and omnipresent at LHC), the use of a properly defined

cone algorithm such as SISCone is likely to be of prime importance.

Acknowledgments

We are grateful to Markus Wobisch for many instructive discussions about cone algorithms,

Steve Ellis and Joey Huston for exchanges about their IR safety and Rsep, Matteo Cacciari

for helpful suggestions on the SISCone code and Giulia Zanderighi for highlighting the

question of collinear safety. We thank them all, as well as George Sterman, for useful com-

ments and suggestions on the manuscript. We also gratefully acknowledge Mathieu Rubin

for a careful reading of an early version of the manuscript, Andrea Banfi for pointing out a

relevant reference and Torbjörn Sjöstrand for assistance with Pythia. The infrared unsafe

– 28 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

configuration shown here was discovered subsequent to discussions with Mrinal Dasgupta

on non-perturbative properties of cone jet algorithms. This work has been supported in

part by grant ANR-05-JCJC-0046-01 from the French Agence Nationale de la Recherche.

G.S. is funded by the National Funds for Scientific Research (Belgium). Finally, we thank

the Galileo Galilei Institute for Theoretical Physics for hospitality and the INFN for partial

support during the completion of this work.

A. Further computational details

A.1 Cone multiplicities

In evaluating the computational complexity of (computational) algorithms for various

stages of the cone jet algorithm it is necessary to know the numbers of distinct cones

and of stable cones. Such information also constitutes basic knowledge about cone jet defi-

nitions, which may for example be of relevance in understanding their sensitivity to pileup,

i.e. multiple pp interactions in the same bunch crossing.

Since large multiplicities will be due to pileup, let us consider a simple model for the

event structure which mimics pileup, namely a set of momenta distributed randomly in y

and φ and all with similar pt’s (or alternatively with random pt’s in some limited range).

Given that the particles will be spread out over a region in y, φ that is considerably

larger than the cone area, in addition to N , the total number of particles, it is useful to

introduce also n, the number of points likely to be contained in a region of area πR2.

The first question to investigate is that of the number of distinct cones. The number

of pairs of points that has to be investigated is O (Nn). However some of these pairs of

points will lead to identical cones. It is natural to ask whether, despite this, the number

of distinct cones is still O (Nn). To answer this question, one may examine how far one

can displace a cone in any given direction before its point content changes. The area swept

when moving a cone a distance δR is 4R δR, and the average number of points intersected

is 4ρR δR where ρ = O
(

n/R2
)

is the density of points (per unit area). Therefore the

distance moved before the cone edge is likely to touch a point is δR = (4ρR)−1 = O (R/n).

Correspondingly the area in which one can move the centre of cone without changing the

cone’s contents is π(δR)2 = O
(

R2/n2
)

. Given that the total area is O
(

R2N/n
)

we have

that the number of distinct cones is O (Nn), the same magnitude as the number of relevant

point pairs.

Let us now consider the number of stable cones. If we take a cone at random and sum

its momenta then the resulting momentum axis will differ from the original cone axis by an

amount typically of order R/
√

n (since the standard deviation of y and φ for set of points

in the cone is O (R)). The probability of the difference being . R/n in both the y and

φ directions (i.e. the probability that the new axis contains the same set of particles) is

∼ (R/n)2/(R/
√

n)2 ∼ 1/n. Therefore the number of stable cones is O (N). This assumes

a random distribution of particles. There may exist special classes of configurations for

which the number of stable cones is greater than O (N). Therefore timing results that are

sensitive to the number of stable cones are to be understood as “expected” results rather

than rigorous upper bounds.

– 29 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

A.2 Computational complexity of the split-merge step

To study the computational complexity of the split-merge step, we work with the expec-

tation that there are O (N) initial protojets (as discussed above) and that there will be

roughly N/n ≪ N final jets (since there are O (n) particles per jet). It is reasonable to

assume that there will be roughly equal numbers of merging and splitting operations. Split-

ting leaves the number of protojets unchanged, while merging reduces it by 1. Therefore

there will be O (N) split-merge steps before we reach the final list of jets.

There are three kinds of tasks in the split-merge procedure. Firstly one has to maintain

a list of jets ordered in p̃t, both for finding the one with highest p̃t and for searching through

the remaining jets (in order of decreasing p̃t) to find an overlapping one. Maintaining the

jets in order is easily accomplished with a balanced tree (for example a priority_queue

or multiset in C++), at a cost of N ln N for the initial construction and lnN per update,

i.e. a total of N lnN , which is small compared to the remaining steps.

In examining the complexity of finding the hardest overlapping jet one needs to know

the cost of comparing two jets for overlap as well as the typical number of times this will

have to be done. A naive comparison of two jets takes time n. Using a 2d tree structure

such as a quadtree or k-d tree (as suggested also by Volobouev [17]), this can be reduced

to
√

n. The number of jets to be compared before an overlap is found will depend on the

event structure — if one assumes that jet positions are decorrelated with their p̃t’s, then

O (N/n) comparisons will have to be made each time around the loop. The total cost of

this will therefore be N2/
√

n (N2) with (without) a 2d tree.

Finally each merging/splitting procedure will take
√

n (n) time with (without) a tree,

so the total time spent merging and splitting will be O (N
√

n) (or O (Nn) without a tree).

The dominant step is the search for overlapping jets, which will have a total cost of

N2/
√

n (with a sizable coefficient), or N2 without any 2d tree structures. Since in practice

N2 is smaller than the Nn ln n needed to find the stable cones, here the introduction of a

tree structure gives little overall advantage.

A final comment concerns memory usage: when not using any tree structures, the list

of protojets and their contents requires O (Nn) space, which is the same order of magnitude

as the storage needed for identifying the set of stable cones in the first place. With a tree

structure this can be reduced to O (N
√

n).

B. Proof of IR safety of the SISCone algorithm

In this appendix, we shall explicitly prove that SISCone, algorithms 1–3, is infrared safe.

This means that if we run SISCone first with a set of hard particles, then with the same set

of hard particles together with additional soft particles, then: (a) all jets found in the event

without soft particles will be found also in the event with the soft particles; (b) any extra

jets found in the event with soft particles will themselves be soft, i.e. they will not contain

any of the hard particles. If either of these conditions fails in a finite region of phasespace

for the hard particles, then the cancellation between (soft) real and virtual diagrams will

be broken at some order of perturbation theory, leading to divergent jet cross sections.

– 30 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

We will first discuss the proof using a simplifying assumption: two protojets with

distinct hard particle content have distinct values for the split-merge ordering variable, p̃t.

We shall then discuss subtleties associated with various ordering variables, and explain

why p̃t is a valid choice.

B.1 General aspects of the proof

By soft particles, we understand particles whose momenta are negligible compared to the

hard ones. Specifically, for any set of hard particles {p1, . . . , pn} and any set of soft ones

{p̄1, . . . , p̄m}, we consider a limit in which all soft momenta are scaled to zero, so that they

do not affect any momentum sums,

lim
{p̄j}→0





n
∑

i=1

pi +
m

∑

j=1

p̄j



 =
n

∑

i=1

pi. (B.1)

In what follows, the limit of the momenta of the soft particles being taken to zero will be

implicit.

Let us now compare two different runs of the cone algorithm: in the first one, referred to

as the “hard event”, we compute the jets starting with a list of hard particles {p1, . . . , pN},
and, in the second one, referred to as the “hard+soft event”, we compute the jets with the

same set of hard particles plus additional soft particles {p̄1, . . . , p̄M}. As mentioned above,

the IR safety of the SISCone algorithm amounts to the statements (a) that for every jet

in the hard event there is a corresponding jet in the hard+soft event with identical hard

particle content (plus possible extra soft particles) and (b) that there are no hard jets in

the hard+soft event that do not correspond to a jet in the hard event. To prove this, we

shall proceed in two steps: first, we shall show that the determination of stable cones is IR

safe, then that the split-merge procedure is also IR safe.

The IR safety of the stable-cone determination is a direct consequence of the fact that:

• each cone initially built from the hard particles only was determined by two particles

in algorithm 2. This cone is thus still present when adding soft particles and, because

of eq. (B.1), is still stable. Hence, all stable cones from the hard event are also present

after inclusion of soft particles, the only difference being that they also contain extra

soft particles which do not modify their momentum.

• no new stable cone containing hard particles can appear. Indeed, if a new stable

cone appeared, Snew with content {pα1
, . . . , pαn , p̄ᾱ1

, . . . , p̄ᾱm}, then the fact that its

momentum
∑

pαi
+

∑

p̄ᾱj
corresponds to a stable cone, implies, by eq. (B.1), that the

cone with just the hard momenta pαi
is also stable. However as shown in section 4.2

all stable cones in the hard event have already been identified, therefore this cone

cannot be new.

From these two points, one can deduce that after the determination of the stable cones we

end up with two different kinds of stable cones: firstly, there are those that are the same as

in the hard event but with possible additional soft particles; and secondly there are stable

– 31 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

cones that contain only soft particles. So, the ‘hard content’ of the stable cones has not

been changed upon addition of soft particles and algorithm 2 is IR safe.

The main idea behind the proof of the IR safety of the split-merge process, algorithm 3,

is to show by induction that the hard content of the protojets evolves in the same way for

the hard and hard+soft event. Since the hard content is the same at the beginning of the

process, it will remain so all along the split-merge process which is what we want to prove.

There is however a slight complication here: when running algorithm 3 over one itera-

tion of the loop in the hard event, we sometimes have to consider more than one iteration

of the loop in the hard+soft event. As we shall shortly see, in that case, only the last of

these iterations modifies the hard content of the jets and it does so in the same way as in

the hard event step.

So, let us now follow the steps of algorithm 3 in parallel for the hard and hard+soft

event, and show that they are equivalent as concerns the hard particles. In the following

analysis, item numbers coincide with the corresponding step numbers in algorithm 3.

2: If pt,min is non-zero, all purely soft protojets will be removed from the hard+soft

event and by eq. (B.1) the same set of hard protojets will be removed in the hard

and hard+soft event. Thus the correspondence between the hard protojets in the

two events will persist independently of pt,min.

3: In general, protojets with identical hard content will have nearly identical p̃t values,

whereas protojets with different hard-particle content will have substantially different

p̃t values.23 Therefore the addition of soft particles will not destroy the p̃t ordering

and the protojet with the largest p̃t in the hard event, i will have the same hard

content as the one in the hard+soft event (let us call it i′).

4: The selection of the highest-p̃t protojet j (j′ in the hard+soft case) that overlaps with

i (i′) can differ in the hard and hard+soft events, and we need to consider separately

the cases where this does not, or does happen. The first case, C1, is that i′ and j′

overlap in their hard content — because of the common p̃t ordering, j′ must then

have the same hard content as j. The second case, C2, is that i′ and j′ only overlap

through their soft particles, so j′ cannot be the ‘same’ jet as j (since j by definition

overlaps with i through hard particles). By following the remaining part of the loop,

we shall show that in the first case all modifications of the hard content are the same

in the hard and hard+soft events, while, for the second case, the iteration of the loop

in the hard+soft event does not modify any hard content of the protojets. In this

second case, we then proceed to the next iteration of the loop in the hard+soft event

but stay at the same one for the hard event.

C1: The two protojets i′ and j′ overlap in their hard content

6,7: We need to compute the fraction of p̃t shared by the two protojets. Since the

hard contents of i (j) and i′ (j′) are identical, the fraction of overlap, given

23As mentioned already, this point is more delicate than it might seem at first sight. We come back to it

in the second part of this appendix.

– 32 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

by the hard content only, will be the same in the hard and hard+soft events.

Hence, the decision to split or merge the protojets will be identical.

8: Since the centres of both protojets are the same in the hard and hard+soft

events, the decision to attribute a hard particle to one protojet or the other will

be the same in both events. Hence splitting will reorganise hard particles in the

same way for the hard+soft event as for the hard one.

10: In both the hard and the hard+soft events, the merging of the two protojets

will result in a single protojet with the same hard content.

C2: The two protojets i′ and j′ overlap through soft particles only

6,7: Since the fraction of p̃t shared by the protojets will be 0 in the limit eq. (B.1),

the two protojets will be split.

8: In the splitting, only shared particles, i.e. soft particles, will be reassigned to

the first or second protojet. The hard content is therefore left untouched, as is

the p̃t ordering of the protojets.

11: At the end of the splitting/merging of the overlapping protojets, we have to consider

the two possible overlap cases separately: in the first case, the hard contents of the

protojets are modified in the same way for the hard and hard+soft event. This case

is thus IR safe. In the second case, the iteration of the loop in the hard+soft event

does not correspond to any iteration of the loop in the hard event. However the hard

content of the protojets in the hard+soft event is not modified and the p̃t ordering of

the jets remains identical; at the next iteration of the hard+soft loop, the new j′ may

once again have just soft overlap with i′ and the loop will thus continue iterating,

splitting the soft parts of the jets, but leaving the hard content of the jets unchanged.

This will continue until j′ corresponds to the j of the hard event, i.e. we encounter

case 1.24 Therefore even though we may have gone around the loop more times in

the hard+soft event, we do always reach a stage where the split-merge operation in

the hard+soft event coincides with that in the hard event, and so this part of the

procedure is infrared safe.

5,14: Up to possible intermediate loops involving case 2 above, when the protojet i has no

overlapping protojets in the hard event, the corresponding i′ in the hard+soft event

has no overlaps either. Final jets will thus be added one by one with the same hard

content in the hard and hard+soft events.

This completes the proof that the SISCone algorithm is IR safe, modulo subtleties related

to the ordering variable, as discussed below. Regarding the ‘merge identical protojets’

(MIP) procedure:

24Note that the second case can only happen a finite number of times between two occurrences of the

first case: as the p̃t ordering is not modified during the second case, each time around the loop the overlap

will involve a j′ with a lower p̃t than in the previous iteration, until one reaches the j′ that corresponds to

j.

– 33 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

12: In algorithm 3, we do not automatically merge protojets appearing with the same

content during the split-merge process. This is IR safe. If instead we allow for two

identical protojets to be automatically merged, then when two protojets have the

same hard content but differ as a result of their soft content, they are automatically

merged in the hard event but not in the hard+soft event. This in turn leads to IR

unsafety of the final jets.

A final comment concerns collinear safety and cocircular points. When defining a

candidate cone from a pair of points, if additional points lie on the edge of the cone,

then there is an ambiguity as to whether they will be included in the cone. From the

geometrical point of view, this special case of cocircular points (on a circle of radius R) can

be treated by considering all permutations of the the cocircular points being included or

excluded from the circle contents. SISCone contains code to deal with this general issue.

The case of identically collinear particles, though a specific example of cocircularity, also

adds the problem that a circle cannot properly be defined from two identical points. For

explicit collinear safety we thus simply merge any collinear particles into a single particle,

step 1 of algorithm 2. Given the resulting collinear-safe set of protojets, the split-merge

steps preserve collinear safety, since particles at identical y − φ coordinates are treated

identically.

B.2 Split-merge ordering variable

Suppose we use some generic variable v (which may be pt, Et, mt, p̃t, etc.) to decide the

order in which we select protojets for the split-merge process. A crucial assumption in the

proof of IR safety is that two jets with different hard content will also have substantially

different values for v, i.e. the ordering of the v’s will not be changed by soft modifications.

If this is not the case then the choice of the hard protojets that enter a given split-merge

loop iteration can be modified by soft momenta, with a high likelihood that the final jets

will also be modified.

At first sight one might think that whatever variable is used, it will have different values

for distinct hard protojets. However, momentum conservation and coincident masses of

identical particles can introduce relations between the kinematic characteristics of distinct

protojets. Some care is therefore needed so as to ensure that these relations do not lead

to degeneracies in the ordering, with consequent ambiguities and infrared unsafety for the

final jets. In particular:

• Two protojets can have equal and opposite transverse momenta if between them they

contain all particles in the event (and the event has no missing energy or ‘ignored’

particles such as isolated leptons). It is probably fair to assume that no two protojets

will have identical longitudinal components, since in pp collisions the hard partonic

reaction does not occur in the pp centre of mass frame.

• Two protojets will have identical masses if they each stem exclusively from the same

kind of massive particle. The two massive particles may be undecayed (e.g. fully

– 34 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

reconstructed b-hadrons) or decayed (top, W , Z, H, or some non-standard new par-

ticle), or even one decayed and the other not (some hypothetical particle with a long

lifetime).25 In the second case we can assume that two identical decayed particles

have different decay planes, because there is a vanishing phase space for them to have

identical decay planes.

Note that in a simple two-parton event almost any choice of variable will lead to a degen-

eracy (no sensible invariant will distinguish the two particles), however this specific case

is not problematic because for R < π/2 neither of the two partons can be in a protojet

that overlaps with anything else. From the point of view of IR safety, it is only for ‘fat’

(non-collimated) hard protojets that we need worry about the problem of degeneracies

in the split-merge ordering, because only then will there be overlaps whose resolution is

ambiguous in the presence of degeneracies.

Let us now consider what occurs with various possible choices for the split-merge

variable.

pt: This choice, adopted in certain codes [13, 19], can be seen to have a problem for events

with momentum conservation in the hadronic part, because if two non-overlapping

protojets contain, between them, all the hard particles then they will have identical

pt’s. If they each overlap with a common third protojet, the resulting split-merge

sequence will be ambiguous. Table 4 provides an example of such an event. The

simplest occurrences of this problem (4h + 1s) apply only to R > π/4 (four particles

must form at least 3 fat protojets). The problem arises also for smaller R values, but

only at higher multiplicities.

mt: A workaround for the event of table 4 is to use the transverse mass, mt =
√

p2
t + m2.

In pure QCD, with all particles stable, this is a good variable, because even if two

fat protojets have identical pt’s through momentum conservation, the fact that they

are ‘fat’ implies that they will be massive (over and above intrinsic particle masses),

and the phase space for them to have identical masses vanishes, thus killing any

IR divergences. However, for events with two identical decaying particles, two fat

protojets resulting from the particle decays can have identical pt’s (by momentum

conservation) and identical masses (because the decaying particles were identical).

This could happen for example in the fully hadronic decay channel for tt̄ events.

Thus, this choice is not advisable in a general purpose algorithm.

Et: The variable used in the original run II proposal was Et [6]. It has the drawback that

it is not longitudinally boost invariant: at central rapidity it is equal to mt, while

at high rapidities it tends to pt. Because the phase space for two protojets to have

identical rapidities vanishes (recall that we do not fix the partonic centre-of-mass),

25Strictly speaking, for all scenarios of decayed heavy particles, the finite width Γ of the particle ensures

that the two jets actually have slightly different masses, breaking any degeneracies. In practice however,

ΓW,Z,t ∼ 1GeV and (for a light Higgs) ΓH ≪ ΛQCD, whereas for the width to save us from the dangers of

degeneracies we would need Γ ≫ ΛQCD.

– 35 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

event 1

n px py pz

0 86.01 66 0

1 64 -66 0

2 -77 -70 0

3 -73 70 0

4 -0.01 0 2

event 2

n px py pz

0 85.99 66 0

1 64 -66 0

2 -77 -70 0

3 -73 70 0

4 0.01 0 2

Table 4: Illustration of two events that conserve transverse momentum and differ only through

a soft particle, but lead to different hard jets with a split-merge procedures that uses pt as the

ordering variable and for measuring overlap. All the particles are to be taken massless. For R = 0.9

and f = 0.7 each event has stable cones consisting of {01}, {23} and {12}, as well as all single

particles. The slight difference in momenta between the two events, to balance the soft particle,

causes the {01} ({23}) protojet to have the largest pt in the first (second) event, it splits with {12}
(merges with {12}), leading after further split-merge steps to two hard jets, {01} and {23} (one

hard ‘monster’ jet, {0123}).

two protojets with identical pt’s and masses will have different Et’s, because the

degree of ‘interpolation’ between between pt and mt will be different. This resolves

the degeneracy and should cure the resulting IR safety issue, albeit at the expense of

introducing boost-dependence.

p̃t: The scalar sum of transverse momenta of the protojet constituents, p̃t, has the prop-

erty that it is equal to mt if all particles in the protojet have identical rapidities,

while it is equal to pt (i.e. the vector sum) if all particles have identical azimuths. For

a decayed massive particle, it essentially interpolates between pt and mt according to

the orientation of the decay plane. The phase space for all particles to have identi-

cal azimuths vanishes, as does the phase space for the decay products of two heavy

particles to have identically oriented decay planes. Therefore this choice resolves any

degeneracies, as is needed for infrared safety. Another advantage of p̃t is that adding

a particle to a protojet always increases its p̃t (this is not the case for pt or Et),

ensuring that the degree of overlap between a pair of jets is always bounded by 1.

Since it is also boost invariant, it is the choice that we recommend and that we adopt

as our default.26

Note that the above considerations hold for any split-merge procedure that relies on

ordering the jets according to a single-jet variable. One might also consider ordering

according to variables determined from pairs of protojets: e.g. first split-merge the pair of

protojets with the largest (or alternatively smallest) overlap, recalculate all overlaps, and

then repeat until there are no further overlaps. However this specific example would also

26One might worry about the naturalness of a variable that depends on the decay plane of heavy particles

— however, any unnaturalness is present anyway in the split-merge procedure since if two particles decay

purely in the transverse plane then there is a likelihood of having overlapping protojets, whereas if they

decay in longitudinally oriented decay planes they will not overlap.

– 36 –

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

be dangerous, since the particles that are common to protojets a and b (say) could also be

the particles that are common between a and c, once again leading to an ambiguous split-

merge sequence. One protojet-pair ordering variable that might be free of this problem is

the y − φ distance between the protojets, however we have not investigated it in detail.

A final comment concerns the impact of the split-merge procedure on non-global [36]

resummations for jets [37], in which one is interested in determining which of a set of

ordered soft particles are in a given hard jet. A soft and collinear splitting inside the jet

can modify the p̃t (or Et or mt) of the jet by an amount of the same order of magnitude

as a soft, large-angle emission near the edge of the jet. In events with two back-to-back

narrow jets, for which there is a near degeneracy between the p̃t’s of the two hard jets,

this can affect which of the two hard protojets split-merges first with an overlapping soft

protojet, leading to ambiguities in the assignment of the soft particles to the two hard jets.

This interaction between collinear and soft modes is somewhat reminiscent of that in [38],

though the origin and structure are kinematical in our case. Considering only branchings

with transverse momenta above ǫpt,hard, for R > π/4 this is likely to be relevant in events

with two equally soft particles (α2
s ln ǫ) and n soft-collinear splittings (αn

s ln2n ǫ) giving an

overall contribution αn+2
s ln2n+1 ǫ. This competes with the normal soft-ordered non-global

logarithms, starting from order α3
s ln3 ǫ. For R ≤ π/4, the problem will only arise with a

greater number of equally soft large-angle particles, and so will be further suppressed by

powers of αs.

References

[1] T.Q.W. Group et al., Tevatron-for-LHC report of the QCD working group, hep-ph/0610012.

[2] S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant kt

clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187;

S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys.

Rev. D 48 (1993) 3160 [hep-ph/9305266].

[3] Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms,

JHEP 08 (1997) 001 [hep-ph/9707323];

M. Wobisch and T. Wengler, Hadronization corrections to jet cross sections in deep- inelastic

scattering, hep-ph/9907280;

M. Wobisch, Measurement and QCD analysis of jet cross sections in deep-inelastic positron

proton collisions at
√

s = 300 GeV, DESY-THESIS-2000-049.

[4] D0 collaboration, V.M. Abazov et al., The inclusive jet cross-section in pp̄ collisions at√
s = 1.8TeV using the kt algorithm, Phys. Lett. B 525 (2002) 211 [hep-ex/0109041].

[5] CDF II collaboration, A. Abulencia et al., Measurement of the inclusive jet cross section

using the kt algorithm in pp̄ collisions at
√

s = 1.96TeV, Phys. Rev. Lett. 96 (2006) 122001

[hep-ex/0512062].

[6] G.C. Blazey et al., Run II jet physics, hep-ex/0005012.

[7] M.H. Seymour and C. Tevlin, A comparison of two different jet algorithms for the top mass

reconstruction at the LHC, JHEP 11 (2006) 052 [hep-ph/0609100].

– 37 –

http://arxiv.org/abs/hep-ph/0610012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB406%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3160
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3160
http://arxiv.org/abs/hep-ph/9305266
http://jhep.sissa.it/stdsearch?paper=08%281997%29001
http://arxiv.org/abs/hep-ph/9707323
http://arxiv.org/abs/hep-ph/9907280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB525%2C211
http://arxiv.org/abs/hep-ex/0109041
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C122001
http://arxiv.org/abs/hep-ex/0512062
http://arxiv.org/abs/hep-ex/0005012
http://jhep.sissa.it/stdsearch?paper=11%282006%29052
http://arxiv.org/abs/hep-ph/0609100

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

[8] G. Sterman and S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett. 39

(1977) 1436.

[9] S.D. Ellis, private communication to the OPAL Collaboration;

D.E. Soper and H.-C. Yang, private communication to the OPAL Collaboration;

L.A. del Pozo, University of Cambridge PhD thesis, RALT-002, 1993;

OPAL collaboration, R. Akers et al., QCD studies using a cone based jet finding algorithm

for e+e− collisions at LEP, Z. Physik C 63 (1994) 197;

M.H. Seymour, Jet shapes in hadron collisions: higher orders, resummation and

hadronization, Nucl. Phys. B 513 (1998) 269 [hep-ph/9707338].

[10] D0 collaboration, V.M. Abazov et al., Measurement of the ratios of the Z/γ∗+ ≥ n jet

production cross sections to the total inclusive Z/γ∗ cross section in pp̄ collisions at√
s = 1.96TeV, hep-ex/0608052.

[11] CDF Run II collaboration, A. Abulencia et al., Measurement of the inclusive jet cross

section in pp̄ interactions at
√

s = 1.96TeV using a cone-based jet algorithm, Phys. Rev. D

74 (2006) 071103 [hep-ex/0512020].

[12] L. A. del Pozo and M. H. Seymour, pxcone (unpublished code).

[13] The CDF Collaboration’s implementation of the Tevatron Run-II cone definition [6] is

available at http://www.pa.msu.edu/˜huston/Les Houches 2005/Les Houches SM.html.

[14] UA1 collaboration, G. Arnison et al., Hadronic jet production at the CERN

proton-anti-proton collider, Phys. Lett. B 132 (1983) 214.

[15] J.E. Huth et al., Toward a standardization of jet definitions, in Snowmass Summer Study

(1990).

[16] N. Kidonakis, G. Oderda and G. Sterman, Threshold resummation for dijet cross sections,

Nucl. Phys. B 525 (1998) 299 [hep-ph/9801268].

[17] I. Volobouev, presentation at MC4LHC meeting, CERN, July (2006).

[18] J. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2jet and Z + 2jet

production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176].

[19] Z. Nagy, Three-jet cross sections in hadron hadron collisions at next-to-leading order, Phys.

Rev. Lett. 88 (2002) 122003 [hep-ph/0110315]; Next-to-leading order calculation of three-jet

observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268].

[20] M. Cacciari and G.P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys. Lett. B 641

(2006) 57 [hep-ph/0512210].

[21] S.D. Ellis, J. Huston and M. Tonnesmann, On building better cone jet algorithms,

hep-ph/0111434.

[22] M. Lüscher, A portable high quality random number generator for lattice field theory

simulations, Comput. Phys. Commun. 79 (1994) 100 [hep-lat/9309020].

[23] H. Samet, The quadtree and related hierarchical data structures, ACM Computing Surveys

(CSUR) 16 (1984) 187.

[24] J.L. Bentley, Multidimensional binary search trees used for associative searching,

Communications of the ACM 18 (1975) 509.

– 38 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C39%2C1436
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C39%2C1436
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC63%2C197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C269
http://arxiv.org/abs/hep-ph/9707338
http://arxiv.org/abs/hep-ex/0608052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C071103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C071103
http://arxiv.org/abs/hep-ex/0512020
http://www.pa.msu.edu/~huston/Les_Houches_2005/Les_Houches_SM.html
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB132%2C214
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB525%2C299
http://arxiv.org/abs/hep-ph/9801268
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C113007
http://arxiv.org/abs/hep-ph/0202176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C122003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C122003
http://arxiv.org/abs/hep-ph/0110315
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C094002
http://arxiv.org/abs/hep-ph/0307268
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB641%2C57
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB641%2C57
http://arxiv.org/abs/hep-ph/0512210
http://arxiv.org/abs/hep-ph/0111434
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C79%2C100
http://arxiv.org/abs/hep-lat/9309020

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

[25] A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and

automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286]; Generalized resummation

of QCD final-state observables, Phys. Lett. B 584 (2004) 298 [hep-ph/0304148].

[26] T. Sjostrand et al., High-energy-physics event generation with PYTHIA 6.1, Comput. Phys.

Commun. 135 (2001) 238 [hep-ph/0010017];

T. Sjostrand, L. Lonnblad, S. Mrenna and P. Skands, PYTHIA 6.3: physics and manual,

hep-ph/0308153.

[27] J.M. Campbell, J.W. Huston and W.J. Stirling, Hard interactions of quarks and gluons: a

primer for LHC physics, Rept. Prog. Phys. 70 (2007) 89 [hep-ph/0611148].

[28] CDF collaboration, F. Abe et al., The topology of three jet events in p̄p collisions at√
s = 1.8 TeV, Phys. Rev. D 45 (1992) 1448.

[29] B. Abbott, M. Bhattacharjee, D. Elvira, F. Nang and H. Weerts (for the D0 Collaboration),

Fixed cone jet definitions in D0 and Rsep, FERMILAB-PUB-97-242-E.

[30] S.D. Ellis, Z. Kunszt and D.E. Soper, Jets at hadron colliders at order α3
s
: a look inside,

Phys. Rev. Lett. 69 (1992) 3615 [hep-ph/9208249].

[31] G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron

emission reactions with interfering gluons. Version 5.1 - April 1991, Comput. Phys.

Commun. 67 (1992) 465;

G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with

interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010

[hep-ph/0011363].

[32] S. Catani and B.R. Webber, Infrared safe but infinite: soft-gluon divergences inside the

physical region, JHEP 10 (1997) 005 [hep-ph/9710333].

[33] A. Daleo, T. Gehrmann and D. Maitre, Antenna subtraction with hadronic initial states,

JHEP 04 (2007) 016 [hep-ph/0612257].

[34] S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles:

top-mass determination, hep-ph/0703207;

A. Hoang and S. Mantry, presentations at the Ringberg workshop on non-perturbative QCD

of jets, Ringberg Castle, 8-10 January (2007).

[35] A.L. Fitzpatrick, J. Kaplan, L. Randall and L.-T. Wang, Searching for the Kaluza-Klein

graviton in bulk RS models, hep-ph/0701150; B. Lillie, L. Randall and L.-T. Wang, The bulk

RS KK-gluon at the LHC, hep-ph/0701166;

B. Holdom, t’ at the LHC: the physics of discovery, JHEP 03 (2007) 063 [hep-ph/0702037];

J.M. Butterworth, J.R. Ellis and A.R. Raklev, Reconstructing sparticle mass spectra using

hadronic decays, hep-ph/0702150.

[36] M. Dasgupta and G.P. Salam, Resummation of non-global QCD observables, Phys. Lett. B

512 (2001) 323 [hep-ph/0104277]; Accounting for coherence in interjet Et flow: a case study,

JHEP 03 (2002) 017 [hep-ph/0203009];

A. Banfi, G. Marchesini and G. Smye, Away-from-jet energy flow, JHEP 08 (2002) 006

[hep-ph/0206076].

[37] R.B. Appleby and M.H. Seymour, Non-global logarithms in inter-jet energy flow with kt

clustering requirement, JHEP 12 (2002) 063 [hep-ph/0211426];

– 39 –

http://jhep.sissa.it/stdsearch?paper=03%282005%29073
http://arxiv.org/abs/hep-ph/0407286
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB584%2C298
http://arxiv.org/abs/hep-ph/0304148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C135%2C238
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C135%2C238
http://arxiv.org/abs/hep-ph/0010017
http://arxiv.org/abs/hep-ph/0308153
http://arxiv.org/abs/hep-ph/0611148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C1448
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C3615
http://arxiv.org/abs/hep-ph/9208249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C67%2C465
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C67%2C465
http://jhep.sissa.it/stdsearch?paper=01%282001%29010
http://arxiv.org/abs/hep-ph/0011363
http://jhep.sissa.it/stdsearch?paper=10%281997%29005
http://arxiv.org/abs/hep-ph/9710333
http://jhep.sissa.it/stdsearch?paper=04%282007%29016
http://arxiv.org/abs/hep-ph/0612257
http://arxiv.org/abs/hep-ph/0703207
http://arxiv.org/abs/hep-ph/0701150
http://arxiv.org/abs/hep-ph/0701166
http://jhep.sissa.it/stdsearch?paper=03%282007%29063
http://arxiv.org/abs/hep-ph/0702037
http://arxiv.org/abs/hep-ph/0702150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB512%2C323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB512%2C323
http://arxiv.org/abs/hep-ph/0104277
http://jhep.sissa.it/stdsearch?paper=03%282002%29017
http://arxiv.org/abs/hep-ph/0203009
http://jhep.sissa.it/stdsearch?paper=08%282002%29006
http://arxiv.org/abs/hep-ph/0206076
http://jhep.sissa.it/stdsearch?paper=12%282002%29063
http://arxiv.org/abs/hep-ph/0211426

J
H
E
P
0
5
(
2
0
0
7
)
0
8
6

A. Banfi and M. Dasgupta, Problems in resumming interjet energy flows with kt clustering,

Phys. Lett. B 628 (2005) 49 [hep-ph/0508159];

Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, On QCD resummation with kt

clustering, JHEP 12 (2006) 044 [hep-ph/0610242].

[38] J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global

observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094].

– 40 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB628%2C49
http://arxiv.org/abs/hep-ph/0508159
http://jhep.sissa.it/stdsearch?paper=12%282006%29044
http://arxiv.org/abs/hep-ph/0610242
http://jhep.sissa.it/stdsearch?paper=08%282006%29059
http://arxiv.org/abs/hep-ph/0604094

